
RF Blockset™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RF Blockset™ User's Guide
© COPYRIGHT 2010–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2010 Online only New for Version 3.0 (Release 2010b)
April 2011 Online only Revised for Version 3.0.2 (Release 2011a)
September 2011 Online only Revised for Version 3.1 (Release 2011b)
March 2012 Online only Revised for Version 3.2 (Release 2012a)
September 2012 Online only Revised for Version 3.3 (Release 2012b)
March 2013 Online only Revised for Version 4.0 (Release 2013a)
September 2013 Online only Revised for Version 4.1 (Release 2013b)
March 2014 Online only Revised for Version 4.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.5 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 6.0 (Release 2017a)
September 2017 Online only Revised for Version 6.1 (Release 2017b)
March 2018 Online only Revised for Version 7.0 (Release 2018a)
September 2018 Online only Revised for Version 7.1 (Release 2018b)
March 2019 Online only Revised for Version 7.2 (Release 2019a)
September 2019 Online only Revised for Version 7.3 (Release 2019b)
March 2020 Online only Revised for Version 7.4 (Release 2020a)
September 2020 Online only Revised for Version 8.0 (Release 2020b)
March 2021 Online only Revised for Version 8.1 (Release 2021a)
September 2021 Online only Revised for Version 8.2 (Release 2021b)
March 2022 Online only Revised for Version 8.3 (Release 2022a)
September 2022 Online only Revised for Version 8.4 (Release 2022b)
March 2023 Online only Revised for Version 8.5 (Release 2023a)

Circuit Envelope

Sensitivity
1

Model System Noise Figure . 1-2

Design Receiver with ADC . 1-8

Intermodulation Distortion
2

Model Direct Conversion Receiver . 2-2

Noise in RF Systems . 2-7
White and Colored Noise . 2-7
Thermal Noise . 2-7
Phase Noise . 2-8
Noise Figure . 2-8

Testbenches
3

Use RF Measurement Testbench for RF-to-IQ Converter 3-2
Device Under Test . 3-3
RF Measurement Unit . 3-3
RF Measurement Unit Parameters . 3-5

Using RF Measurement Testbench for IQ-to-RF Converter 3-10
Device Under Test . 3-11
RF Measurement Unit . 3-11
RF Measurement Unit Parameters . 3-13

v

Contents

RF Blockset Models

Analog Devices Transceiver Models
4

AD9361 Models . 4-2
AD9361_TX Analog Devices Transmitter . 4-3
AD9361_RX Analog Devices Receiver . 4-4

AD9361 Testbenches . 4-6
AD9361_TX Analog Devices Transmitter Testbench 4-7
AD9361_RX Analog Devices Receiver Testbench 4-7
AD9361_QPSK Analog Devices Testbench . 4-8

AD9371 Models . 4-9
AD9371_TX Analog Devices Transmitter . 4-10
AD9371_RX Analog Devices Receiver . 4-11
AD9371_ORX Analog Devices Observer Receiver 4-12
AD9371_SNF Analog Devices Sniffer Receiver 4-13

AD9371 Testbenches . 4-15
AD9371_TX Analog Devices Transmitter Testbench 4-16
AD9371_RX Analog Devices Receiver Testbench 4-17
AD9371_ORX Analog Devices Observer Receiver Testbench 4-18
AD9371_SNF Analog Devices Sniffer Receiver Testbench 4-18
AD9371_TX_ORX Analog Devices Transmitter-Observer Testbench

. 4-19

Equivalent Baseband

Model an RF System
5

Model RF Components . 5-2
Add RF Blocks to a Model . 5-2
Connect Model Blocks . 5-3

Specify or Import Component Data . 5-5

Specify Operating Conditions . 5-13

Model Nonlinearity . 5-14
Amplifier and Mixer Nonlinearity Specifications 5-14
Add Nonlinearity to Your System . 5-14

vi Contents

Model Noise . 5-16
Amplifier and Mixer Noise Specifications . 5-16
Add Noise to Your System . 5-17
Plot Noise . 5-20

Plot Model Data
6

Create Plots . 6-2
Available Data for Plotting . 6-2
Validate Individual Blocks and Subsystems . 6-2
Types of Plots . 6-3
Plot Formats . 6-3
How to Create a Plot . 6-10
Example — Plot Component Data on a Z Smith Chart 6-16

Update Plots . 6-20

Modify Plots . 6-21

Create and Modify Subsystem Plots . 6-23

RF Blockset Equivalent Baseband Algorithms
A

Simulate an RF Model . A-2

Determine Modeling Frequencies . A-3

Map Network Parameters to Modeling Frequencies A-4

Model Noise in an RF System . A-5
Output-Referred Noise in RF Models . A-5
Calculate Noise Figure at Modeling Frequencies A-6
Calculate System Noise Figure . A-7
Calculate Output Noise Power . A-8

Create Complex Baseband-Equivalent Model A-9
Baseband-Equivalent Modeling . A-9
Simulation Efficiency of a Baseband-Equivalent Model A-12
Example — Select Parameter Values for a Baseband-Equivalent Model

. A-12

Convert to and from Simulink Signals . A-22
Signal Conversion Specifications . A-22
Interpret Simulink Signals as Incident Power Waves A-22
Interpret Simulink Signals as Source Voltages A-24
Specify Input Signal Conversions . A-24

vii

Model Mixers
B

2-Port Mixer Blocks . B-2

Model a Mixer Chain . B-4

Quadrature Mixers . B-6
Use RF Blockset Equivalent Baseband Software to Model Quadrature

Mixers . B-6
Model Upconversion I/Q Mixers . B-6
Model Downconversion I/Q Mixers . B-7
Simulate I/Q Mixers . B-7

Examples
7

Vary Phase Of Signal During Simulation . 7-2

Vary Attenuation of Signal During Simulation . 7-4

Explicitly Simulate Resistor Thermal Noise . 7-5

Attenuate Signal Power . 7-6

Demodulate Two-Tone RF Signal Using IQ Demodulator 7-7

Modulate Two-Tone DC Signal Using IQ Modulator 7-12

Spot Noise Data in Amplifiers and Effects on Measured Noise Figure . . 7-16

Measure Transducer Gain of Device Under Test . 7-20

Measure Noise Figure of Device Under Test . 7-22

Measure IIP2 of Device Under Test . 7-25

Measure IIP3 of Device Under Test . 7-27

Measure OIP2 of Device Under Test . 7-30

Measure OIP3 of Device Under Test . 7-32

Single Pole Triple Throw Switch . 7-35

Frequency Response of Lowpass Chebyshev Filter 7-38

Model LO Phase Noise . 7-42

Carrier to Interference Performance of Weaver Receiver 7-48

viii Contents

Modulate Two-Tone DC Signal Using IQ Modulator 7-55

Measurement of Gain and Noise Figure Spectrum 7-59

Idealized Baseband Amplifier with Nonlinearity and Noise 7-72

Use Ladder Filter Block to Filter Gaussian Noise 7-74

Measure S-Parameter Data of Chebyshev Filter . 7-77

Measure S-Parameter of Nonlinear System . 7-81

Simulation of RF Systems with Antenna Blocks . 7-87

Power Amplifier Characterization . 7-92

Modulate Quadrature Baseband Signals Using IQ Modulators 7-104

Intermodulation Analysis of Mathematical Amplifier 7-107

Create Virtual Connections Using Connection Label Block 7-109

Model Wilkinson Power Divider . 7-110

Modulate Input Signal Onto Square Carrier Wave 7-115

Time-Domain Filtering of RF Complex Baseband Signals in Simulink 7-122

Model RF Complex Baseband S-Parameters in Simulink 7-125

RF Blockset Examples
8

Getting Started with RF Modeling . 8-2

Passband Signal Representation in Circuit Envelope 8-6

Power Ports and Signal Power Measurement in RF Blockset 8-11

Communications System with Embedded RF Receiver 8-13

Automatic Sample-Time Interpolation at Input Port 8-17

Analysis of Frequency Response of RF System . 8-32

Compare Time and Frequency Domain Simulation Options for S-
parameters . 8-40

Transmission Lines, Delay-Based and Lumped Models 8-47

Validating IP2/IP3 Using Complex Signals . 8-57

ix

Two-Tone Envelope Analysis Using Real Signals . 8-61

Measuring Image Rejection Ratio in Receivers . 8-66

Executable Specification of a Direct Conversion Receiver 8-70

Frequency Response of RF Transmit/Receive Duplex Filter 8-75

Digital Predistortion to Compensate for Power Amplifier Nonlinearities
. 8-78

Radar System Modeling . 8-87

RF Receiver Modeling for LTE Reception . 8-92

Create Custom RF Blockset Models . 8-99

Multiple Realizations of Cascaded Filters . 8-104

Cascaded RF Systems . 8-106

Power in Simulink Sources and Signals . 8-108

Effect of Nonlinear Amplifier on 16-QAM Modulation 8-120

Executable Specification for System Design . 8-123

Radar Tracking System . 8-132

User-Defined Nonlinear Amplifier Model . 8-138

Modeling and Simulation of MIMO RF Receiver Including Beamforming
. 8-143

Modeling RF mmWave Transmitter with Hybrid Beamforming 8-149

Wireless Digital Video Broadcasting with RF Beamforming 8-156

Top-Down Design of an RF Receiver . 8-166

Architectural Design of a Low IF Receiver System 8-178

RF Noise Modeling . 8-184

Impact of Thermal Noise on Communication System Performance . . . 8-187

100 Watt TR Module for S-Band Applications . 8-191

Massive MIMO Hybrid Beamforming with RF Impairments 8-196

Speed Up PA and DPD simulation . 8-210

Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block
. 8-219

x Contents

PA and DPD Modeling for Dynamic EVM Measurement 8-232

RF Impairments for 5G NR Downlink Waveforms 8-262

Design and Simulate Monopulse Tracking System 8-273

Enable Model Protection and Accelerator Modes in RF Blockset Models
. 8-282

Design RF Direct-Conversion Receiver . 8-284

Protect Circuit Envelope Model . 8-288

Implement Automatic Gain Control for RF Receiver 8-295

Cross-Product Workflow Topics
9

RF System Design for Radar and Wireless Communications 9-2
Design Considerations . 9-2
Design Workflows . 9-2

RF Transceiver Design . 9-4
Design Considerations . 9-4
Design Workflows . 9-4

RF Noise and Nonlinearity Simulations . 9-6
PA Characterizations and Spot Noise Measurements 9-6
Idealized Baseband Simulations . 9-6
Simulation Workflows . 9-6

xi

Circuit Envelope

13

Sensitivity

• “Model System Noise Figure” on page 1-2
• “Design Receiver with ADC” on page 1-8

1

Model System Noise Figure

This example shows how to model system noise figure in RF Blockset™. RF receivers amplify signals
and shift them to lower frequencies. The receiver itself introduces noise that degrades the received
signal. The signal-to-noise ratio (SNR) at the receiver output ultimately determines the usability of
the receiver.

The preceding figure illustrates the effect of the receiver on the signal. The receiver amplifies a low-
power RF signal at the carrier fRF with a high SNR and downconverts the signal to fIF. The noise
figure (NF) of the system determines the difference between the SNR at the output and the SNR at
the input:

SNR(out) = SNR(in) – NF(sys)

Where the difference is calculated in decibels. Excessive noise figure in the system causes the noise
to overwhelm the signal, making the signal unrecoverable.

Create Low-IF Receiver Model

The model ex_simrf_snr_model simulates a simplified IF receiver architecture. A Sinusoid block
and a Noise block model a two-tone input centered at fRF and low-level thermal noise. The RF system
amplifies the signal and mixes it with the local oscillator fLO down to an intermediate frequency fIF. A
voltage sensor recovers the signal at the IF.

1 Sensitivity

1-2

Setup RF Blockset Environment

To maximize performance, the Fundamental tones and Harmonic order parameters specify the
simulation frequencies explicitly in the Configuration block:

• fLO, the frequency of the LO in the first mixing stage, equals 1.9999 GHz. and appears in the list
of fundamental tones as carriers.LO.

• fRF, the carrier of the desired signal, equals 2 GHz and appears in the list of fundamental tones as
carriers.RF.

• fIF, the intermediate frequency, equals fRF – fLO. The frequency is a linear combination of the
first-order (fundamental) harmonics of fLO and fRF. Setting Harmonic order to 1 is sufficient to
ensure this frequency appears in the simulation frequencies. This minimal value for the harmonic
order ensures a minimum of simulation frequencies.

Solver conditions and noise settings are also specified for the Configuration block:

• The Solver type is set to auto. For more information on choosing solvers, see Configuration
block.

• The Sample time parameter is set to 1/(mod_freq*64). This setting ensures a simulation
bandwidth 64 times greater than the envelope signals in the system.

• The Simulate noise box is checked, so the environment includes noise parameters during
simulation.

The model uses subsystems with a MATLAB Coder™ implementation of a fast Fourier transform (FFT)
to generate two plots. The FFT uses 64 bins, so for a sampling frequency of 64 Hz, the bandwidth of
each bin is 1 Hz. Subsequently, the power levels shown in the figures also represent the power
spectral density (PSD) of the signals in dBm/Hz.

 Model System Noise Figure

1-3

View Simulation Output

1 Sensitivity

1-4

The Input Display plot shows the power spectrum of the signal and noise at the input of the receiver.
The measured power of each tone is consistent with the expected power level of a 0.1vμV two-tone
envelope:

A factor of 1/2 is due to voltage division across source and load resistors, and another factor of 1/2 is
due to envelope scaling. For more information on scaling envelope signals for power calculation, see
“Two-Tone Envelope Analysis Using Real Signals” on page 8-61. The measured noise floor at -177
dBm/Hz is reduced by 3 dB from the specified -174 dBm/Hz noise floor. The difference is due to power
transfer from the source to the input of the amplifier. The amplifier also models a thermal noise floor,
so although this decrease is unrealistic, it does not affect accuracy at the output stage.

The Output Display plot shows the power spectrum of the signal and noise at the output of the
receiver. The measured PSD of –102 dBm/Hz for each tone is consistent with the 40-dB combined
gain of the amplifier and mixer. The noise PSD in the figure is shown to be approximately 50 dB
higher at the output, due to the gain and noise figure of the system.

 Model System Noise Figure

1-5

Simulate Thermal Noise Floor

Thermal noise power can be modeled according to the equation,

where:

 is Boltzmann's constant, equal to J/K.

T is the noise temperature, specified as 293.15 K in this example.

 is the noise source impedance, specified as 50 ohm in this example to agree with the resistance
value of the Resistor block labeled R1.

Δf is the noise bandwidth.

To model the noise floor on the RF signal at the resistor, the model includes a Noise block:

The *Noise Power Spectral Density (Watts/Hz) parameter is calculated as . The
*Carrier frequencies parameter, set to carriers.RF , places noise on the RF carrier only.

Compute System Noise Figure

To model RF noise from component noise figures:

• Select Simulate noise in the RF Blockset Parameters block dialog box, if it is not already selected.
• Specify a value for the Noise figure (dB) parameter in Amplifier and Mixer blocks.

The noise figures are not strictly additive. The amplifier contributes more noise to the system than
the mixer because it appears first in the cascade. To calculate the total noise figure of the RF system
with n stages, use the Friis equation:

where Fi and Gi are the noise factor and gain of the ith stage, and NFi = 10log10(Fi).

In this example, the noise figure of the amplifier is 10 dB, and the noise figure of the mixer is 15 dB,
so the noise figure of the system is:

The Friis equation shows that although the mixer has a higher noise figure, the amplifier contributes
more noise to the system.

See Also
Noise | Amplifier | Mixer

1 Sensitivity

1-6

More About
• “Noise in RF Systems” on page 2-7

 Model System Noise Figure

1-7

Design Receiver with ADC

Most RF receivers in modern communications or radar systems feed signals to an analog-to-digital
converter (ADC). Due to their finite resolution, ADCs introduce quantization error into the system.
The resolution of the ADC is determined by the number of bits and the full-scale (FS) range of the
ADC.

The preceding figure illustrates an RF signal that falls within the dynamic range (DR) of an ADC. The
input signal and noise at the carrier fRF has high signal-to-noise ratio (SNR). The received signal at
fIF has reduced SNR due to system noise figure. However, if the quantization error is near or above
the receiver noise, system performance degrades.

To ensure that the ADC contributes no more than 0.1 dB of noise to the signal at fIF , the
quantization noise floor must be 16 dB lower than the receiver noise. This condition can be met by:

• Reducing the full-scale (FS) range or increasing the resolution of the ADC, which lowers the
quantization noise floor.

• Increasing the gain of the RF receiver, which raises the receiver noise floor.

Overcome Quantization Error of an ADC

The model ex_simrf_adc_rx simulates a low IF receiver with an ADC. This model is based on low
IF receiver design from the “Model System Noise Figure” on page 1-2. At the output of the RF
system, the ADC subsystem models an ADC with an FS range of sqrt(100e-3) V and a resolution of 16
bits.

open_system("ex_simrf_adc_rx")

1 Sensitivity

1-8

The power of a voltage signal at the full-scale range of the ADC in dBm is

P_vs = 10*log10(sqrt(100^-3))+30 = 0

View Simulation Output

The power levels shown in the figures represent the power spectral density (PSD) of the signals in
dBm/Hz.

The Spectrum Analyzer Block shows the power spectrum of the two-tone signal and noise at the input
of the receiver-ADC system. The measured power of each tone of -142 dBm is consistent with the
expected power level of a 0.1 uV signal. The power level of the noise is consistent with a -174 dBm/Hz
noise floor. The output spectrum plot shows power spectrum of the output signal.

sim("ex_simrf_adc_rx")

 Design Receiver with ADC

1-9

The quantization error exceeds the receiver noise.

1 Sensitivity

1-10

Measure Quantization Noise Floor

To calculate the quantization noise floor (QNF_ADC) of the ADC, subtract the dynamic range from the
full-scale power, which is 0 dBm. QNF_ADC is calculated using this equation:

QNF_ADC = 6.02*N_bits + 10*log10(deltaf) + 1.76 = 116.1 dBm/Hz

where

• N_bits is the resolution. The ADC in this example uses 16 bits.
• deltaf is the bandwidth of the FFT, which is 64 in this example. Oversampling in an ADC yields

lower quantization noise.
• The value 1.76 is a correction factor for a pure sinusoidal input.

Therefore, the quantization noise floor is -116 dBm/Hz, in agreement with the measured output
levels.

Improving Receiver-ADC Performance

Increasing the gain in the mixer raises the receiver noise without increasing the noise figure.
Calculate the mixer gain required to achieve a 16-dB margin between the quantization noise floor and
the receiver noise:

G_mixer = (QNF_ADC+16) - (-174+G_sys+NF_sys) = (-116.1+16) - (-174+40+10) = 23.9 dB

To simulate a receiver that clears the quantization noise floor: set the Available power gain parameter
of the mixer to 23.9 and click Run.

sim("ex_simrf_adc_rx_mixer")

 Design Receiver with ADC

1-11

The figure shows that the receiver noise is 16 dB above the quantization noise floor.

See Also
Mixer | Amplifier

More About
• “RF Noise Modeling” on page 8-184
• “Noise in RF Systems” on page 2-7

1 Sensitivity

1-12

Intermodulation Distortion

• “Model Direct Conversion Receiver” on page 2-2
• “Noise in RF Systems” on page 2-7

2

Model Direct Conversion Receiver

This example shows you how to model a direct conversion receiver. Direct conversion receivers are
sensitive to second-order intermodulation products because they transfer the RF signal directly to
baseband. The RF system consists of a low-noise amplification (LNA) stage, a direct-conversion stage,
and a final amplification stage.

System Specifications

Open the model to inspect the direct conversion receiver.

open_system("ex_simrf_dc_model")
%

The model runs according to the following environment settings:

In the Configuration block, the Fundamental tones parameter specifies the carriers in the RF
Blockset™ environment:

• fRF = fLO, the carrier of the RF and the local oscillator.
• fBL, the blocker carrier

The RF Blockset environment always simulates the 0 Hz carrier, regardless of whether the RF
Blockset parameters block specifies it.

In the Solver Configuration dialog box, the Use local solver box is selected. This setting causes the RF
Blockset environment to simulate with a local solver with the following settings:

• Solver type is Trapezoidal rule .
• Sample time is sample_time, defined as 1.25e-4 in the model initialization function.

2 Intermodulation Distortion

2-2

Since the model uses a local solver, the global solver settings do not affect the simulation within the
RF Blockset environment. For more information on global and local solvers, see “Choosing Simulink
and Simscape Solvers”

To maximize performance, set Fundamental tones and Harmonic order parameters to specify the
simulation frequencies explicitly in the Configuration block:

• fRF = fLO, the carrier of the RF and the local oscillator, appears as a fundamental tone.
• fBL, the blocker carrier, appears as a fundamental tone.

A carrier of 0 Hz, representing the passband signal, is included in the set of first-order harmonics of
both fundamental tones. Therefore, setting Harmonic order to 1 is sufficient to ensure that this
frequency appears in the simulation frequencies. This minimal value for the harmonic order ensures a
minimum of simulation frequencies.

Solver conditions and noise settings are also specified for the Configuration block:The Solver type is
set to auto. For more information on choosing solvers, see Configuration or see “Choosing Simulink
and Simscape Solvers”.

The Sample time parameter is set to sample_time , which is equal to 1/(mod_freq*64). This
setting ensures a simulation bandwidth 64 times greater than the envelope signals in the system.

The Simulate noise check box is checked to include noise parameters during simulation.

View Simulation Output

Four Spectrum Analyzer blocks from Circuit Envelope Utilities sublibrary are used to visualize the
outputs.

sim("ex_simrf_dc_model")
%

 Model Direct Conversion Receiver

2-3

2 Intermodulation Distortion

2-4

 Model Direct Conversion Receiver

2-5

• The RF Display plot shows the power level of the RF signal. The power level of the RF is about
100 dBm.

• The Blocker Display plot shows the power spectrum centered at the carrier fBL. The power level
of the blocker is about 90 dB higher than the signal power of the RF.

• The In-Phase Output plot shows the power spectrum of the in-phase signal at baseband. In the
figure, DC power is a direct result of the blocker and the IP2 in the mixers.

• The Quadrature Output plot shows the power spectrum of the quadrature signal at baseband.

Modeling IMD in System-Level Components

The IP2 and IP3 parameters specify the second- and third-order intercept points of Amplifier and
Mixer blocks:

• The amplifiers have infinite IP2 and IP3, so the amplifiers are linear.
• IP2 of the mixer is 15 dB

Amplifier and Mixer components have specified gains and noise figures:

• The gain and noise figure in the LNA stage are 25 dB and 6 dB, respectively.
• The gain and noise figure in the mixing stage are 10 dB and 10 dB. The Input impedance

parameters of the two mixers are both 100 ohms, which sum in parallel to a resistance of 50 ohms
to match the output impedance of the LNA.

• The gain and noise figure in the final amplification stage are 20 dB and 15 dB, respectively.

To calculate RF system noise figure, use the Friis equation:

F_sys = F1 + F2-1/G1 + F3-1/G1G2 + ... + Fn-1/G1G2...Gn-1

Where Fn and Gn are the noise figure and gain of the nth stage.

Examining DC Impairments

In addition to intermodulation distortion from IP2, direct-conversion receivers are subject to
additional DC impairments. For example, coupling between mixer input and local oscillator (LO) ports
causes self-mixing of the LO. For more information, see “Executable Specification of a Direct
Conversion Receiver” on page 8-70.

See Also

Related Examples
• “Top-Down Design of an RF Receiver” on page 8-166

2 Intermodulation Distortion

2-6

Noise in RF Systems
In this section...
“White and Colored Noise” on page 2-7
“Thermal Noise” on page 2-7
“Phase Noise” on page 2-8
“Noise Figure” on page 2-8

Noise in an RF system is generated internally by active components in the system or introduced
externally like channel interference or antenna.

White and Colored Noise
White noise: Noise with a flat frequency spectrum is called white noise. White noise has equal
power across all frequencies of the system band width.

Colored noise: Noise with power that varies according to frequencies in an RF system bandwidth is
called colored noise.

To simulate white or colored noise in RF Blockset, use the Noise block.

Thermal Noise
Thermal noise is the most common noise introduced in an RF system. This noise is generated
internally by active components in the system or externally due to channel interference or antenna.
Thermal noise is also known as Johnson or Nyquist noise. The equation for thermal noise is:

PN = kBTB

• kB is Boltzmann's constant, equal to 1.38065 × 10-23 J/K.
• T is the noise temperature, specified as 293.15 K in this example.
• Rs is the noise source impedance, specified as 50 Ω in this example to agree with the resistance

value of the Resistor block labeled R1.
• B is the bandwidth.

At room temperature, the thermal noise generated by system with a band width of 1 Hz is -174 dBm.

To generate thermal noise in a RF Blockset system use Resistor and Configuration block. You can also
generate thermal noise using the S-Parameters block if the S-parameter is passive.

Thermal noise floor in RF Blockset is defined by the equation:

Pnoise = 4kBTRsΔf

where:

• kB is Boltzmann's constant, equal to 1.38065 × 10-23 J/K.
• T is the noise temperature, specified as 293.15 K in this example.
• Rs is the noise source impedance, specified as 50 Ω in this example to agree with the resistance

value of the Resistor block labeled R1.

 Noise in RF Systems

2-7

• Δf is the noise bandwidth.

Phase Noise
Phase noise is a short-term fluctuation in the phase of an oscillator signal. This noise introduces
uncertainty in the detection of digitally modulated signals. Phase noise is defined as the ratio of
power ins one-phase modulation sideband to the total signal power per unit bandwidth. It is
expressed in decibels relative to the carrier power per hertz of bandwidth (dBc/Hz). To know how to
model LO phase noise in an oscillator see, “Model LO Phase Noise” on page 7-42.

Noise Figure
Noise figure value determines the degradation of signal to noise ratio of a signal as it goes through
the network. Noise figure is defined by the equation:

Nf =
Signal
Noise at the input

Signal
Noise at the output

Excessive noise figure in the system causes the noise to overwhelm the signal, making the signal
unrecoverable. Noise figure is a function of frequency but it is independent of the bandwidth of the
system. Noise figure is expressed in dB.

In RF Blockset, you can specify noise figure for an RF system using the Amplifier or Mixer blocks.

See Also

More About
• “Model System Noise Figure” on page 1-2

2 Intermodulation Distortion

2-8

Testbenches

• “Use RF Measurement Testbench for RF-to-IQ Converter” on page 3-2
• “Using RF Measurement Testbench for IQ-to-RF Converter” on page 3-10

3

Use RF Measurement Testbench for RF-to-IQ Converter
In this section...
“Device Under Test” on page 3-3
“RF Measurement Unit” on page 3-3
“RF Measurement Unit Parameters” on page 3-5

Use the RF Measurement Testbench to measure various quantities of an RF-to-IQ converter.
Measurable quantities include cumulative gain, noise figure, and nonlinearity (IP3) values. To open
the testbench and measure the quantities, use the RF Budget Analyzer app to create an RF-to-IQ
converter and then click Export > Measurement testbench.

The testbench has two subsystems:

• RF Measurement Unit
• Device Under Test

The testbench display shows the measured output values of the gain, NF (noise figure), IP3 (third-
order intercept), and other quantities etc.

3 Testbenches

3-2

Device Under Test

The Device Under Test subsystem contains the RF system exported from the app.

RF Measurement Unit

The RF Measurement Unit subsystem consists of a Simulink Controller and RF Blockset Circuit
Envelope interface. The RF Blockset interface is used as input and output from the DUT.

 Use RF Measurement Testbench for RF-to-IQ Converter

3-3

3 Testbenches

3-4

RF Measurement Unit Parameters

• Simulate noise (both stimulus and DUT) — Select this check box to enable noise modeling in
the stimulus signal entering the DUT and inside the DUT.

• Measured quantity — Choose the quantity you want to measure:

• Gain – Measure the transducer gain of the converter, assuming a load of 50 ohm. If you choose
only I or only Q from Response branch, you see only half the value of the measured gain.

• NF – Measure the noise figure value at the output of the converter.
• IP3 – Measure the output or input third-order intercept (IP3).
• IP2 – Measure the output or input second-order intercept (IP2).

 Use RF Measurement Testbench for RF-to-IQ Converter

3-5

• DC Offset – Measure the DC level interference centered on the desired signal due to LO
leakage mixing with input signal.

• Image Rejection Ratio – Measure the image rejection ratio required to cancel the effect of
images at the RF input signal.

By default, the testbench measures the Gain. The contents in the Instructions tab changes
according to the Measured quantity value.

• IP Type — Choose the type of intercept points (IP) to measure: Output referred or Input
referred.

By default, the testbench measures Output referred. This option is available when you set the
Measured quantity to IP2 or IP3.

• Injection Type – Choose the local oscillator (LO) injection for image rejection ratio: Low-side or
High-side.

By default, the testbench measures the Low-side. This option is available when you set the
Measured quantity to Image Rejection Ratio.

• Response branch — Choose the output branch you want to measure from:

• I only(Q=0) – Output signal measured at the in-phase branch.
• Q only(I=0) – Output signal measured at the quadrature branch.

This option is not available when you set the Measured quantity to Image Rejection Ratio.

Parameters Tab

• Input power amplitude (dBm) – Available input power to the DUT. You can change the input
power by manually specifying a value or by turning the knob. When measuring DC Offset, this
input field is Input RMS voltage (dBmV), because the Offset is measured in voltage units. The
specified voltage represents the voltage falling on the input ports of the DUT.

• Input frequency (Hz) – Carrier frequency fed at the RF input of the DUT.
• Output frequency (Hz) – Output frequency to measure the I and Q outputs of the DUT. By

default, this frequency is one bandwidth above DC, to allow meaningful measurement.
• Baseband bandwidth (Hz) – Bandwidth of the input signal.
• Ratio of test tone frequency to baseband bandwidth – Position of the test tones used for IP3

measurements. By default, the value is 1/8.

3 Testbenches

3-6

Instructions Tab

Instructions for Gain Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate gain measurement. Select the
check box to account for the noise.

• Change the Input power amplitude (dBm) or turn the knob to reduce the input power
amplitude. For high input power, nonlinearities in the DUT can affect the gain measurements.

 Use RF Measurement Testbench for RF-to-IQ Converter

3-7

Instructions for NF Measurement

• The testbench measures the spot NF calculated. This calculation assumes a frequency-
independent system within a given bandwidth. To simulate a frequency-independent system and
calculate the correct NF value, reduce the baseband bandwidth until this condition is fulfilled. In
common RF systems, the bandwidth is reduced below 1 kHz for NF testing.

• Change Input power amplitude (dBm) or turn the knob to reduce or increase the input power
amplitude. For high input power, nonlinearities in the DUT can affect the NF measurements. For
low input power, the signal is too close or below the noise floor of the system. As a result, the NF
fails to converge.

Instructions for IP3 and IP2 Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate IP3 and IP2 measurement.
• Change Input power amplitude (dBm) or turn the knob to reduce the input power amplitude.

For high input power, higher-order nonlinearities in the DUT can affect the OIP3 and IIP3
measurements.

Instructions for DC Offset Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate DC offset measurement.
• Correct calculation of the DC offset assumes a frequency-independent system in the frequencies

surrounding the test tones. Reduce the frequency separation between the test tones or reduce the
baseband bandwidth until this condition is fulfilled. In common RF systems, the bandwidth is
reduced below 1 KHz for DC offset testing.

• . Change Input RMS voltage amplitude (dBmV) or turn the knob to reduce the input RMS
voltage amplitude. For high input RMS voltage, higher-order nonlinearities in the DUT can affect
the DC offset measurements

Instructions for Image Rejection Ratio

• Clear Simulate noise (both stimulus and DUT) for accurate OIP3 and IIP3 measurement.
• Correct calculation of the image rejection ratio (IRR) assumes a frequency-independent system in

the frequencies surrounding the test tones. Reduce the frequency separation between the test
tones or reduce the baseband bandwidth until this condition is fulfilled. In common RF systems,
the bandwidth is reduced below 1 KHz for IRR testing.

• . Change Input power amplitude (dBm) or turn the knob to reduce the input power amplitude.
For high input power, higher-order nonlinearities in the DUT can affect the image rejection ratio
measurement.

For all measurements using the testbench, you cannot correct result discrepancies using the RF
Budget Analyzer app. The RF Blockset testbench provides true RF circuit simulation that
incorporates RF phenomena including saturation and interaction between multiple tones and
harmonics in nonlinear devices. These RF phenomena are not yet incorporated in RF Budget
Analyzer, leading to some differences in the values between the testbench and the app.

See Also
RF Budget Analyzer | Amplifier | Mixer

3 Testbenches

3-8

More About
• “Using RF Measurement Testbench for IQ-to-RF Converter” on page 3-10
• “Using RF Measurement Testbench”

 Use RF Measurement Testbench for RF-to-IQ Converter

3-9

Using RF Measurement Testbench for IQ-to-RF Converter

In this section...
“Device Under Test” on page 3-11
“RF Measurement Unit” on page 3-11
“RF Measurement Unit Parameters” on page 3-13

Use the RF Measurement Testbench to measure various quantities of an IQ-to-RF converter system.
Measurable quantities include cumulative gain, noise figure, and nonlinearity (IP3) values. To open
the testbench and measure the quantities, use the RF Budget Analyzer app to create an RF system
and then click Export > Measurement testbench.

The testbench has two subsystems:

• RF Measurement Unit
• Device Under Test

The testbench display shows the measured output values of the gain, NF (noise figure), IP3 (third-
order intercept), and other quantities.

3 Testbenches

3-10

Device Under Test

The Device Under Test subsystem contains the RF system exported from the app.

RF Measurement Unit

The RF Measurement Unit subsystem consists of a Simulink Controller and RF Blockset Circuit
Envelope interface. The RF Blockset interface is used as input and output from the DUT.

 Using RF Measurement Testbench for IQ-to-RF Converter

3-11

3 Testbenches

3-12

RF Measurement Unit Parameters

• Simulate noise (both stimulus and DUT) — Select this check box to enable noise modeling in
the stimulus signal entering the DUT and inside the DUT.

• Measured quantity — Choose the quantity you want to measure:

• Gain – Measure the transducer gain of the converter. If you choose only I or only Q from
Stimulus branch, you only see half the value of the measured gain.

• Noise Floor – Measure the noise floor value of the converter.
• IP3 – Measure the output or input third-order intercept (IP3).
• IP2 – Measure the output or input second-order intercept (IP2).

 Using RF Measurement Testbench for IQ-to-RF Converter

3-13

• Carrier Feedthrough – Measure the leakage of carrier tone into the RF spectrum due to
imbalances in the in-phase and quadrature phase inputs.

• Sideband Suppression – Measure the sideband suppression required for the ideal
cancellation of image signals around the RF output signal.

By default, the testbench measures Gain. The contents in the Instructions tab changes
according to the Measured quantity value.

• IP Type – Choose the type of intercept points (IP) to measure: Output referred or Input
referred,

By default, the testbench measures Output referred. This option is available when you set the
Measured quantity to IP2 or IP3.

• Injection Type – Choose the local oscillator (LO) injection for sideband suppression: Low-side or
High-side,

By default, the testbench measures Low-side. This option is available when you set the
Measured quantity to Sideband Suppression.

• Stimulus branch — Choose the branch you want to use as input stimulus for the measurement:

• I and Q (Q=-j*I) — Signal measured is based on a combination of input signals.
Quadrature input is same as the in-phase input but is –90 degrees out of phase.

• I and Q (Q=j*I) — Signal measured is based on a combination of input signals. Quadrature
input is same as the in-phase input but is 90 degrees out of phase.

• I only(Q=0) — Signal measured is only the output of the in-phase input signal. Gain
measured using this input is only one quarter of the total output signal gain.

• Q only(I=0) — Signal verified is only the output of the quadrature input signal. Gain
measured using this input is only one quarter of the total output signal gain.

Parameters Tab

• Input power amplitude (dBm) — Available input power to the DUT. You can change the input
power by manually specifying or by turning the knob. When measuring Carrier Feedthrough,
this input field is Input RMS voltage (dBmV), because the feedthrough is measured in voltage
units. The specified voltage represents the voltage falling on the input ports of the DUT.

• Input frequency (Hz) — Carrier frequency fed into the I and Q inputs of the DUT. By default, this
frequency is by default one bandwidth above DC.

• Output frequency (Hz) — Output frequency to measure the DUT.
• Baseband bandwidth (Hz) — Bandwidth of the input signal.
• Ratio of test tone frequency to baseband bandwidth — Position of the test tones used for IP3

measurements. By default, the value is 1/8.

This option is only available when you set Measured quantity to IP2, IP3, and Carrier
Feedthrough.

3 Testbenches

3-14

Instructions Tab

Instructions for Gain Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate gain measurement. Select the
check box for account for noise.

• Change the Input power amplitude (dBm) or turn the knob to reduce the input power
amplitude. For high input power, nonlinearities in the DUT can affect the gain measurements.

Instructions for Noise Floor Measurement

• The testbench measures the spot noise floor calculated. This calculation assumes a frequency-
independent system within a given bandwidth. To simulate a frequency-independent system and

 Using RF Measurement Testbench for IQ-to-RF Converter

3-15

calculate the correct noise floor value, reduce the baseband bandwidth until this condition is
fulfilled. In common RF systems, the bandwidth is reduced below 1 kHz for noise floor testing.

• Change Input power amplitude (dBm) or turn the knob to reduce or increase the input power
amplitude. For high input power, nonlinearities in the DUT can affect the noise floor
measurements.

Instructions for IP3 and IP2 Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate IP3 and IP2 measurement.
• Change Input power amplitude (dBm) or turn the knob to reduce the input power amplitude.

For high input power, higher-order nonlinearities in the DUT can affect the IP3 and IP2
measurements.

Instructions for Carrier Feedthrough Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate IP3 and IP2 measurement.
• Change Input RMS voltage amplitude (dBmV) or turn the knob to reduce the input RMS

voltage amplitude. For high input RMS voltage, higher-order nonlinearities in the DUT can affect
the carrier feedthrough measurements

• Correct calculation of the carrier feedthrough assumes a frequency-independent system in the
frequencies surrounding the test tones. Reduce the frequency separation between the test tones
or reduce the baseband bandwidth until this condition is fulfilled. In common RF systems, the
bandwidth is reduced below 1 KHz for carrier feedthrough testing.

Instructions for Sideband Suppression Measurement

• Clear Simulate noise (both stimulus and DUT) for accurate IP3 and IP2 measurement.
• Change Input power amplitude (dBm) or turn the knob to reduce the input power amplitude.

For high input power, higher-order nonlinearities in the DUT can affect the sideband suppression
measurement.

For all measurements using the testbench, you cannot correct result discrepancies using the RF
Budget Analyzer app. The RF Blockset testbench provides true RF circuit simulation that
incorporates RF phenomena including saturation and interaction between multiple tones and
harmonics in nonlinear devices. These RF phenomena are not incorporated in RF Budget Analyzer,
leading to some differences in the values between the testbench and the app.

See Also
RF Budget Analyzer

3 Testbenches

3-16

RF Blockset Models

17

Analog Devices Transceiver Models

• “AD9361 Models” on page 4-2
• “AD9361 Testbenches” on page 4-6
• “AD9371 Models” on page 4-9
• “AD9371 Testbenches” on page 4-15

4

AD9361 Models

In this section...
“AD9361_TX Analog Devices Transmitter” on page 4-3
“AD9361_RX Analog Devices Receiver” on page 4-4

You can use the AD9361 models to simulate Analog Devices® AD9361 RF transmitter or receiver
designs. These models also helps to see the impact of RF imperfections on your transmitted or
received signal.

Install Analog Devices RF Transceivers using, simrfSupportPackages. You can open models using
the Simulink® Library Browser and opening RF Blockset Models for Analog Devices RF Transceivers,
or by typing the following in the MATLAB® command prompt:

open ad9361_models

Choose the model you want from the library:

Note You require these additional licenses to run this model:

• Communications Toolbox™
• Stateflow®

• Fixed-Point Designer™

Complete documentation on how to use the models is available with the software download.

open(ad93xx_getdoc)

4 Analog Devices Transceiver Models

4-2

AD9361_TX Analog Devices Transmitter
Model Description

The transmitter model consists of three stages:

• Digital up-conversion filters (DUC_Filters_TX))
• Analog filters (Analog_Filters_TX)
• RF front end (RF_TX)

You can use the transmitter model to simulate the following behaviors:

• Tunable attenuation
• Oscillator phase noise
• Carrier-dependent noise floor
• Attenuation and carrier-dependent nonlinearities like output-referred third-order intercept (OIP3)
• Attenuation dependent gain imbalance
• Attenuation dependent local oscillator (LO) carrier leak

 AD9361 Models

4-3

AD9361_RX Analog Devices Receiver
Model Description

The receiver model consists of:

• RF receiver (RF_RX)
• Analog filters (Analog_Filters_RX)
• Analog to Digital Converter (ADC_RX)
• Digital down-conversion filters (DDC)
• Receiver signal strength indicators
• Automatic gain control (AGC) state machine
• Gain table

You can use the receiver model to simulate the following behaviors:

• Tunable low-noise amplifier, mixer, and trans-impedance amplifier (LMT) gains
• Carrier-dependent noise floor
• Gain and carrier-frequency dependent nonlinearities like output-referred third-order intercept

(OIP3)
• Gain and carrier-frequency dependent nonlinearities like output–referred second–order intercept

(OIP2)
• Gain dependent gain imbalance
• Gain dependent local oscillator (LO) carrier leak

4 Analog Devices Transceiver Models

4-4

See Also
simrfSupportPackages

More About
• “AD9361 Testbenches” on page 4-6
• “AD9371 Models” on page 4-9

 AD9361 Models

4-5

AD9361 Testbenches
In this section...
“AD9361_TX Analog Devices Transmitter Testbench” on page 4-7
“AD9361_RX Analog Devices Receiver Testbench” on page 4-7
“AD9361_QPSK Analog Devices Testbench” on page 4-8

You can use the AD9361 testbench models to analyze the functioning and values of Analog Devices
AD9361 RF transmitter, receiver, or end-to-end designs.

Install Analog Devices RF Transceivers using simrfSupportPackages. You can open the testbench
models using the Simulink library browser and opening RF Blockset Models for Analog Devices RF
Transceivers, or by typing the following in the MATLAB command prompt:

open ad9361_testbenches

Click to open the AD9361 testbench model from the library:

Note You require these additional licenses to run this model:

• Communications Toolbox
• Stateflow
• Fixed-Point Designer

4 Analog Devices Transceiver Models

4-6

Complete documentation on how to use the models is available with the software download.

open(ad93xx_getdoc)

AD9361_TX Analog Devices Transmitter Testbench

The transmitter testbench consists of:

• CW and LTE Signal sources
• AD9361 transmitter which is the device under test
• Spectrum analyzer and power meter for signal visualization

AD9361_RX Analog Devices Receiver Testbench

The receiver testbench consists of:

• CW and LTE Signal sources

 AD9361 Testbenches

4-7

• AD9361 receiver which is the device under test
• Spectrum analyzer and power meter for signal visualization

AD9361_QPSK Analog Devices Testbench

The QPSK testbench consists of:

• QPSK signal generator
• AD9361 transmitter operating at 2 GHz, with default LTE 5-MHz filter configuration
• Multi-path Rayleigh fading channel
• Multi-path Rayleigh fading channel
• AD9361 receiver operating at 2 GHz, with default LTE 5-MHz filter configuration
• QPSK baseband signal demodulator decoder.

See Also
simrfSupportPackages

More About
• “AD9371 Testbenches” on page 4-15
• “AD9361 Models” on page 4-2

4 Analog Devices Transceiver Models

4-8

AD9371 Models
In this section...
“AD9371_TX Analog Devices Transmitter” on page 4-10
“AD9371_RX Analog Devices Receiver” on page 4-11
“AD9371_ORX Analog Devices Observer Receiver” on page 4-12
“AD9371_SNF Analog Devices Sniffer Receiver” on page 4-13

You can use the AD9371 models to simulate Analog Devices AD9371 RF transmitter, receiver,
observer, and sniffer designs. These models also helps to see the impact of RF imperfections on your
transmitted or received signal.

Install Analog Devices RF Transceivers using simrfSupportPackages. You can open models using
the Simulink Library Browser and opening RF Blockset Models for Analog Devices RF Transceivers,
or by typing the following in the MATLAB command prompt:

open ad9371_models

Choose the model you want from the library:

Note You require these additional licenses to run this model:

• Communications Toolbox

 AD9371 Models

4-9

• Stateflow
• Fixed-Point Designer

Complete documentation on how to use the models is available with the software download.

open(ad93xx_getdoc)

AD9371_TX Analog Devices Transmitter
Model Description

The transmitter model consists of three stages:

• Digital up-conversion filters (DUC_Filters_TX))
• Analog filters (Analog_Filters_TX)
• RF front end (RF_TX)

You can use the transmitter model to simulate the following behaviors:

• Tunable attenuation
• Attenuation and carrier-frequency dependent noise floor
• Attenuation and carrier-frequency dependent output-referred third-order intercept (OIP3) and

output-referred second-order intercept (OIP2)
• Attenuation and carrier-frequency dependent gain imbalance (to model finite image rejection)
• Attenuation and carrier-frequency dependent local oscillator (LO) carrier leakage

4 Analog Devices Transceiver Models

4-10

AD9371_RX Analog Devices Receiver
Model Description

The receiver model consists of three stages:

• RF receiver (RF_RX)
• Analog filters (LPF_RX)
• Analog-to-Digital converter (ADC_RX)
• Digital down-conversion filters (DDC_Filters_RX)
• Receiver signal strength indicator (RSSI): two power meters to detect the strength of the received

signal at different section of the chain (Analog Peak Detector, and HB2 Overload Detector)
• Automatic gain control state machine (AGC)
• Programmable gain table (Gain Table)

You can use the receiver model simulate the following behaviors:

• Tunable internal attenuation
• Attenuation and carrier-frequency dependent noise figure
• Attenuation and carrier-frequency dependent output-referred third-order intercept (OIP3) and

output-referred second-order intercept (OIP2)
• Attenuation and carrier-frequency dependent gain imbalance (to model finite image rejection)
• Attenuation and carrier-frequency dependent local oscillator (LO) carrier leakage
• Analog filters provide continuous time signal
• ADC models a high-sampling rate third order delta-sigma modulator.

 AD9371 Models

4-11

• Digital down conversion digital filters converts the highly sampled signal at the output of the ADC
to a lower baseband rate.

• Received signal strength indicator measures power at two stages, at the RF receiver output and
after the first half-band filter

• AGC changes the index of the gain table according to the flags of threshold crossing reported by
the RSSI.

• Default gain table is read from the MATLAB file, DefaultGainTables. You can customize this
file.

AD9371_ORX Analog Devices Observer Receiver
Model Description

The observer receiver model consists of three stages:

• RF receiver (RF_RX)
• Analog filters (LPF_RX)
• Analog to Digital converter (ADC_RX)
• Digital down-conversion filters (DDC_Filters_RX)
• Automatic gain control state machine (AGC) operating in manual control mode
• Programmable gain table (Gain Table)

You can use the observer receiver model to simulate the following behaviors:

• Tunable internal attenuation
• Attenuation and carrier-frequency dependent noise figure

4 Analog Devices Transceiver Models

4-12

• Attenuation and carrier-frequency dependent output-referred third-order intercept (OIP3) and
output-referred second-order intercept (OIP2)

• Attenuation and carrier-frequency dependent gain imbalance (to model finite image rejection)
• Attenuation and carrier-frequency dependent local oscillator (LO) carrier leakage
• Analog filters provide continuous time signal.
• ADC models a high-sampling rate third-order delta-sigma modulator.
• Digital down conversion digital filters converts the highly sampled signal at the output of the ADC

to a lower baseband rate.
• Received signal strength indicator measures power at two stages, at the RF receiver output and

after the first half-band filter
• Default gain table is read from the MATLAB file, DefaultGainTables. You can customize this
file.

AD9371_SNF Analog Devices Sniffer Receiver
Model Description

The sniffer receiver model consists of three stages:

• RF receiver (RF_RX)
• Analog filters (LPF_RX)
• Analog to Digital converter (ADC_RX)
• Digital down-conversion filters (DDC_Filters_RX)
• Receiver signal strength indicator (RSSI): two power meters to detect the strength of the received

signal at different section of the chain (Analog Peak Detector, and HB2 Overload Detector)

 AD9371 Models

4-13

• Automatic gain control state machine (AGC) operating in manual control mode
• Programmable gain table (Gain Table)

You can use the AD9371 sniffer receiver model to simulate the following behaviors:

• Tunable internal attenuation
• Carrier-frequency dependent noise figure
• Attenuation and carrier-frequency dependent output-referred third-order intercept (OIP3) and

output-referred second-order intercept (OIP2)
• Attenuation and carrier-frequency dependent gain imbalance (to model finite image rejection)
• Attenuation and carrier-frequency dependent local oscillator (LO) carrier leakage
• Analog filters provide continuous time signal.
• ADC models a high-sampling rate third-order delta-sigma modulator.
• Digital down conversion digital filters converts the highly sampled signal at the output of the ADC

to a lower baseband rate.
• Received signal strength indicator measures power at two stages, at the RF receiver output and

after the first half-band filter
• AGC changes the index of the gain table according to the flags of threshold crossing reported by

the RSSI.
• Default gain table is read from the MATLAB file, DefaultGainTables. You can customize this
file.

See Also
simrfSupportPackages

More About
• “AD9371 Testbenches” on page 4-15
• “AD9361 Models” on page 4-2

4 Analog Devices Transceiver Models

4-14

AD9371 Testbenches

In this section...
“AD9371_TX Analog Devices Transmitter Testbench” on page 4-16
“AD9371_RX Analog Devices Receiver Testbench” on page 4-17
“AD9371_ORX Analog Devices Observer Receiver Testbench” on page 4-18
“AD9371_SNF Analog Devices Sniffer Receiver Testbench” on page 4-18
“AD9371_TX_ORX Analog Devices Transmitter-Observer Testbench” on page 4-19

You can use the AD9371 testbench models to analyze the functioning and values of Analog Devices
AD9371 RF transmitter, receiver, observer, sniffer, or end-to-end designs.

Install Analog Devices RF Transceivers using simrfSupportPackages. You can open the testbench
models using the Simulink library browser and opening RF Blockset Models for Analog Devices RF
Transceivers, or by typing the following in the MATLAB command prompt:

open ad9371_testbenches

Click to open the AD9371 testbench model from the library:

Note You require these additional licenses to run this model:

• Communications Toolbox

 AD9371 Testbenches

4-15

• Stateflow
• Fixed-Point Designer

Complete documentation on how to use the models is available with the software download.

open(ad93xx_getdoc)

AD9371_TX Analog Devices Transmitter Testbench

The transmitter testbench consists of:

• CW and LTE Signal sources
• External local oscillator signal source
• AD9371 transmitter which is the device under test
• Spectrum analyzer and power meter for signal visualization

4 Analog Devices Transceiver Models

4-16

AD9371_RX Analog Devices Receiver Testbench

The receiver testbench consists of:

• CW and LTE 20 MHz Signal sources
• External local oscillator signal source
• AD9371 receiver which is the device under test
• Spectrum analyzer and power meter for signal visualization

 AD9371 Testbenches

4-17

AD9371_ORX Analog Devices Observer Receiver Testbench

The observer receiver testbench consists of:

• CW and LTE 20 MHz Signal sources
• External local oscillator signal source
• AD9371 receiver which is the device under test
• Spectrum analyzer and power meter for signal visualization

AD9371_SNF Analog Devices Sniffer Receiver Testbench

4 Analog Devices Transceiver Models

4-18

The sniffer receiver testbench consists of:

• CW and LTE 20 MHz Signal sources
• AD9371 sniffer receiver which is the device under test
• Spectrum analyzer and power meter for signal visualization

AD9371_TX_ORX Analog Devices Transmitter-Observer Testbench

The transmitter-observer testbench consists of:

• CW and LTE 20 MHz Signal sources
• External local oscillator signal source driving both transmitter and observer
• AD9371 transmitter and observer connected via directional coupler
• Spectrum analyzer and power meter for signal visualization

See Also
simrfSupportPackages

More About
• “AD9361 Testbenches” on page 4-6
• “AD9371 Models” on page 4-9

 AD9371 Testbenches

4-19

Equivalent Baseband

21

Model an RF System

• “Model RF Components” on page 5-2
• “Specify or Import Component Data” on page 5-5
• “Specify Operating Conditions” on page 5-13
• “Model Nonlinearity” on page 5-14
• “Model Noise” on page 5-16

5

Model RF Components

In this section...
“Add RF Blocks to a Model” on page 5-2
“Connect Model Blocks” on page 5-3

Add RF Blocks to a Model
You can include blocks from the RF Blockset Equivalent Baseband Physical and Mathematical
libraries in a Simulink model. For more information on the libraries and the available RF blocks, see
“RF Blockset Equivalent Baseband Libraries”.

This section contains the following topics:

• “Input Signal Requirements” on page 5-2
• “How to Add RF Blocks to a Model” on page 5-2

Input Signal Requirements

Most RF Blockset Equivalent Baseband blocks only support complex single-channel signals. The
signals can be either sample-based or frame-based. The following blocks have this requirement:

• All Physical blocks
• Mathematical Amplifier and Mixer blocks

You can model the effect of these components on a multichannel signal as follows:

1 Use a Simulink Demux block to split the multichannel signal into single-channel signals.
2 Create duplicate RF models, with one model for each channel, and pass each single-channel

signal into a separate model.
3 Use a Simulink Mux block multiplex the signals at the output of the RF models.

How to Add RF Blocks to a Model

To add RF blocks to a Simulink model:

1 Type rflib at the MATLAB prompt to open the RF Blockset Equivalent Baseband library.
2 Navigate to the desired library or sublibrary.
3 Drag instances of RF Blockset Equivalent Baseband blocks into the model window using the

mouse.

Note You can also access RF Blockset Equivalent Baseband blocks and other Simulink blocks from
the Simulink Library Browser window. Open this window by typing slLibraryBrowser at the
MATLAB prompt. Add blocks to the model by dragging them from this window and dropping them
into the model window.

5 Model an RF System

5-2

Connect Model Blocks
You follow the same procedure for connecting RF Blockset Equivalent Baseband blocks as for
connecting Simulink blocks: you click a port and drag the mouse to draw a line to another port on a
different block.

You can only connect blocks that use the same type of signal. Physical library blocks use different
types of signals than Mathematical library blocks, and are represented graphically by a different port
style. Therefore, you can freely connect pairs of Mathematical modeling blocks. You can also freely
connect pairs of Physical modeling blocks. However, you cannot directly connect Physical blocks to
Mathematical blocks. Instead, you must use the Input Port and Output Port blocks to bridge them.

For more information on the Physical and Mathematical libraries, including how to open the libraries
and a description of the available blocks, see “Overview of RF Blockset Equivalent Baseband
Libraries”.

This section contains the following topics:

• “Connect Mathematical Blocks” on page 5-3
• “Connect Physical Blocks” on page 5-3
• “Bridge Physical and Mathematical Blocks” on page 5-4

Connect Mathematical Blocks

The Mathematical library blocks use the same input and output ports as standard Simulink blocks.
These ports show the direction of the signal at the port, as shown in the following diagram.

Similar to standard Simulink blocks, you draw lines between the ports of the Mathematical modeling
blocks, called signal lines, to represent signals that are inputs to and outputs from the mathematical
functions represented by the blocks. Therefore, you can connect Simulink, DSP System Toolbox™,
and RF Blockset Equivalent Baseband mathematical blocks by drawing signal lines between their
ports.

You can connect a port to multiple ports by branching the signal line, or you can leave a port
unconnected.

Connect Physical Blocks

The Physical library blocks have specialized connector ports. These ports only represent physical
connections; they do not imply signal direction.

 Model RF Components

5-3

The lines you draw between the physical modeling blocks, called connection lines, represent physical
connections among the block components. Connection lines appear as solid black when connected
and as dashed red lines when either end is unconnected.

You can draw connection lines only between the connector ports of physical modeling blocks. You
cannot branch these connection lines. You cannot leave connector ports unconnected.

Bridge Physical and Mathematical Blocks

The blockset provides the Input Port and Output Port blocks to connect the physical and
mathematical parts of the model. These blocks convert mathematical signals to and from the physical
modeling environment.

The Input Port and Output Port blocks have one of each kind of connector port: a standard Simulink
style input port and a physical modeling port. These ports are shown in the following figure:

The Input Port and Output Port blocks must bound a physical subsystem to connect it to the
mathematical part of a model.

For example, a simple RF model of a microstrip transmission line might resemble the following figure.

The Microstrip Transmission Line block uses an Input Port block to get its white noise input from a
Random Source block, and an Output Port block to pass its output to a Spectrum Scope block. The
Random Source and Spectrum Scope blocks are from DSP System Toolbox library.

For information on how RF Blockset Equivalent Baseband software converts mathematical signals to
and from the physical modeling environment, see “Convert to and from Simulink Signals” on page A-
22.

See Also
Input Port | Output Port | Microstrip Transmission Line

More About
• “Simulate High Frequency Components”

5 Model an RF System

5-4

Specify or Import Component Data

This example shows how to specify or import component data in and equivalent baseband system.

Specify Parameter Values

You can set block parameter values either

• Setting the parameter values directly in the block
• Using the set_param and get_param functions to set and get parameter values of the blocks,

respectively.

Supported File Types for Importing Data

RF blockset™ lets you import the following types of data files:

• Industry-standard file formats — Touchstone S2P, Y2P, Z2P, and H2P formats specify the network
parameters and noise information for measured and simulated data. For more information, see
Touchstone specifications.

• Agilent® P2D file format — Specifies amplifier and mixer large-signal, power-dependent network
parameters, noise data, and intermodulation tables for several operating conditions, such as
temperature and bias values. The P2D file format lets you import system-level verification models
of amplifiers and mixers.

• Agilent S2D file format — Specifies amplifier and mixer network parameters with gain
compression, power-dependent S21 parameters, noise data, and intermodulation tables for several
operating conditions. The S2D file format lets you import system-level verification models of
amplifiers and mixers.

• MathWorks™ amplifier (AMP) file format — Specifies amplifier network parameters, power data,
noise data, and third-order intercept point. For more information, see “AMP File Data Sections”.

• MATLAB® circuits — RF Toolbox™ circuit objects in the MATLAB workspace specify network
parameters, noise data, and third-order intercept point information of circuits with different
topologies. For more information, see “RF Circuit Objects”.

Import Data Files into RF Blocks

RF blockset lets you import industry-standard data files, Agilent P2D and S2D files, and MathWorks
AMP files into specific blocks to simulate the behavior of measured components in the Simulink
modeling environment.

This section contains the following topics:

• Blocks Used to Import Data
• How to Import Data Files

Blocks Used to Import Data

Three blocks in the Physical library accept data from a file. The following table lists the blocks and
any corresponding data format that each supports.

 Specify or Import Component Data

5-5

https://ibis.org/connector/touchstone_spec11.pdf

How to Import Data Files

To import a data file:

• Choose the block that best represents your component from the list of blocks that accept file data
shown in Blocks Used to Import Data section.

• Open the Physical library, and navigate to the sublibrary that contains the block.
• Click and drag the block into your Simulink model.
• In the block dialog box, enter the name of your data file for the Data file parameter. The file name

must include the extension. If the file is not in your MATLAB path, specify the full path to the file
or use the Browse button to find the file.

Example: Import Touchstone Data File into RF Model

In this example, you model the frequency response of a passive component using data from a
Touchstone file, defaultbandpass.s2p.

You use a model from one of the RF Blockset Equivalent Baseband examples to perform the following
tasks:

• Import Data into General Passive Network Block
• Validate Passive Component

Import Data into General Passive Network Block

In this part of the example, you inspect the defaultbandpass.s2p file and import data into the RF
model using the General Passive Network block.

Type the following at the MATLAB prompt to open the defaultbandpass.s2p file:

edit defaultbandpass.s2p

Open sparam_filter.slx, Touchstone Data File for 2-port Bandpass Filter.

open_system("sparam_filter.slx")

5 Model an RF System

5-6

Double-click the General Passive Network block to display its parameters.

The Data source parameter is set to Data file, to specify the data file to import. The Data file
parameter is set to defaultbandpass.s2p. The block uses this data with the other block
parameters during simulation.

Note that When the imported file contains data that is measured at frequencies other than the
modeling frequencies, use the Interpolation method parameter to specify how the block determines
the data values at the modeling frequencies. For more information, see “Determine Modeling
Frequencies” on page A-3 and “Map Network Parameters to Modeling Frequencies” on page A-
4.

Validate Passive Component

In this part of the example, you plot the network parameters of the General Passive Network block to
validate the data you imported in Import Data into General Passive Network Block.

• Open the General Passive Network block dialog box, and select the Visualization tab.
• Set the Source of frequency data parameter to User-specified.
• Set the Frequency data (Hz) parameter to [0.5e9:0.1e6:1.5e9].
• Click Plot.

These actions create a plot of the magnitude and phase of S21 as a function of frequency.

 Specify or Import Component Data

5-7

Import Circuits from MATLAB Workspace

You can only connect Physical library blocks in cascade. However, the blockset works with RF Toolbox
software to let you include additional circuit topologies in an RF model. To model circuit topologies
that contain other types of connections, you must define a circuit in the MATLAB workspace and
import it into an RF model.

To import a circuit from the MATLAB workspace:

• Define the circuit object in the MATLAB workspace using the RF Toolbox functions. For more
information, see “RF Circuit Objects”.

• Add a General Circuit Element block to your RF model from the Black Box Elements sublibrary of
the Physical library. For information on how to open this library, see “Equivalent Baseband
Library”.

• Enter the circuit object name in the RFCKT object parameter in the General Circuit Element block
dialog box.

This procedure is illustrated by example in the following section.

5 Model an RF System

5-8

Example: Import Bandstop Filter into RF Model

In this example, you simulate the frequency response of a filter that you model using circuit objects
from the MATLAB workspace.

The filter in this example is the 50-ohm bandstop filter shown in the following figure.

You represent the filter using four circuit objects that correspond to the four parts of the filter, ckt1,
ckt2, ckt3, and ckt4 in the diagram. You use an input signal with random, complex input values
that have a Gaussian distribution to stimulate the filter. The scope block displays the output signal.

This example illustrates how to perform the following tasks:

• Create Circuit Objects in MATLAB Workspace
• Build Model
• Specify and Import Component Data
• Run Simulation and Plot Results

Create Circuit Objects in MATLAB Workspace

In this part of the example, you define MATLAB variables to represent the physical properties of the
filter shown in the previous figure, Bandstop Filter Diagram, and use functions from RF Toolbox
software to create RF circuit objects that model the filter components.

Type the following at the MATLAB prompt to define the filter's capacitance and inductance values in
the MATLAB workspace:

C1 = 1.734e-12;
C2 = 4.394e-12;
C3 = 7.079e-12;
C4 = 7.532e-12;
C5 = 1.734e-12;
C6 = 4.394e-12;
L1 = 25.70e-9;
L2 = 3.760e-9;
L3 = 17.97e-9;
L4 = 3.775e-9;
L5 = 17.63e-9;
L6 = 25.70e-9;

 Specify or Import Component Data

5-9

Type the following at the MATLAB prompt to create RF circuit objects that model the components
labeled ckt1, ckt2, ckt3, and ckt4 in the circuit diagram:

ckt1 = ...
 rfckt.series('Ckts',{rfckt.shuntrlc('C',C1),...
 rfckt.shuntrlc('L',L1,'C',C2)});
ckt2 = ...
 rfckt.parallel('Ckts',{rfckt.seriesrlc('L',L2),...
 rfckt.seriesrlc('L',L3,'C',C3)});
ckt3 = ...
 rfckt.parallel('Ckts',{rfckt.seriesrlc('L',L4),...
 rfckt.seriesrlc('L',L5,'C',C4)});
ckt4 = ...
 rfckt.series('Ckts',{rfckt.shuntrlc('C',C5),...
 rfckt.shuntrlc('L',L6,'C',C6)});

For more information about the RF Toolbox objects used in this example, see the rfckt.series,
rfckt.parallel, rfckt.seriesrlc, and rfckt.shuntrlc object reference pages in the RF
Toolbox documentation.

Build Model

In this portion of the example, you create a Simulink model. For more information about adding and
connecting components, see “Model RF Components” on page 5-2.

Create a new model. Add to the model the blocks shown in the following table. The Library column of
the table specifies the hierarchical path to each block.

Connect the blocks as shown in the following figure. Change the names of your General Circuit
Element blocks to match those in the figure by double-clicking the text below the block and typing a
new name. Alternatively, open the model attached in this example.

open_system('importing_circuits.slx')

5 Model an RF System

5-10

Specify and Import Component Data

In this portion of the example, you specify block parameters. To open the parameter dialog box for
each block, double-click the block.

In the Random Source block, set:

• Source type — Gaussian
• Sample time — 1/100e6
• Samples per frame — 256
• Complexity — Complex

Selecting these settings creates an input signal with random, complex input values that have a
Gaussian distribution.

In the Input Port block, set:

• Treat input Simulink signal as — Source voltage
• Finite impulse response filter length — 256
• Center frequency (Hz) — 400e6
• Sample time — 1/100e6
• Input processing — Columns as channels (frame based)

and clear the Add noise check box. Selecting these settings defines the physical characteristics and
modeling bandwidth of the filter.

Set the parameters of the General Circuit Element blocks as follows:

• In the General Circuit Element1 block, set the RFCKT object parameter to ckt1
• In the General Circuit Element2 block, set the RFCKT object parameter to ckt2
• In the General Circuit Element3 block, set the RFCKT object parameter to ckt3
• In the General Circuit Element4 block, set the RFCKT object parameter to ckt4

Selecting these settings imports the circuit objects that model the filter components into the model.

In the Output Port block, set the Load impedance (ohms) parameter to 50.

Set the Spectrum Analyzer block parameters as follows:

• In the View tab, under Spectrum Settings > Main options, set Type to Power denisity,
Method to Welch , and Window Length to 1024 and NFFT to 256

• In the View tab, under Spectrum Settings > Trace options, set the Averaging method to
Running and Averages to 100. This parameter establishes the number of spectra that the scope
averages to produce the displayed signal. You use a value of 100 because the input signal is
random and you want to display the average filter response over a large number of input values.

• In the View tab, under Configuration Properties, set the Y-limit (Minimum) parameter to
-115 and the Y-limit parameter (Maximum) to -76.4. These values set the range of x- and y-
values on the display such that the entire signal is visible when you run the simulation.

• Set the Y label parameter to Magnitude-squared.

 Specify or Import Component Data

5-11

Run Simulation and Plot the Results

Click Run in the model window to start the simulation.

sim("importing_circuits.slx")
pause(5)

The Spectrum Scope block displays the frequency response at the shifted (baseband-equivalent)
frequencies, not at the selected passband frequencies. You can relabel the x-axis of the Spectrum
Scope window to display the passband signal by entering the Center frequency parameter value of
400e6 (from the Input Port block) for the Frequency display offset (Hz) parameter in the Axis
Properties tab of the Spectrum Scope block. For more information on complex-baseband modeling,
see “Create Complex Baseband-Equivalent Model” on page A-9.

References
[1] Geffe, P.R., “Novel designs for elliptic bandstop filters,” RF Design, February 1999.

See Also
Input Port | Output Port | Configuration

More About
• “Create Complex Baseband-Equivalent Model” on page A-9

5 Model an RF System

5-12

Specify Operating Conditions
Agilent® P2D and S2D files contain simulation results at one or more operating conditions. Operating
conditions define the independent parameter settings that are used when creating the file data. The
specified conditions differ from file to file.

When you import component data from a .p2d or .s2d file into a General Amplifier or General Mixer
block, the block contains parameter values for several operating conditions. The available conditions
depend on the data in the file. By default, the blockset defines the object behavior using the property
values that correspond to the operating conditions that appear first in the file. To use other property
values, you must select a different operating condition in the block dialog box.

If the block contains data at multiple operating conditions, the Operating Conditions tab contains
two columns. The Conditions column shows the available conditions, and the Values column
contains a drop-down list of the available values for the corresponding condition.

Block Dialog Box Showing Operating Conditions

To specify the operating condition values for a simulation:

1 Double-click the block to open the block dialog box.
2 Select the Operating Conditions tab.
3 In the Conditions column, find the condition to specify. Select the corresponding pull-down list

in the Values column, and choose the desired operating condition value.

Repeat the preceding step as needed to specify the desired operating condition values.

 Specify Operating Conditions

5-13

Model Nonlinearity
In this section...
“Amplifier and Mixer Nonlinearity Specifications” on page 5-14
“Add Nonlinearity to Your System” on page 5-14

Amplifier and Mixer Nonlinearity Specifications
You define nonlinearity for the physical amplifier and mixer blocks at one or more frequency points
through one of the following specifications:

• Power data, consisting of output power as a function of input power, imported into the block.
• Third-order intercept data, with or without power parameters, in the block dialog box. The

available power parameters are gain compression power (defined as the ratio of output power to
input power at small input power) and output saturation power.

The following table summarizes the nonlinearity specification options for each type of physical
amplifier and mixer block.

Block Nonlinearity Specification
General Amplifier You can choose either of the following

specifications: Power data (using a P2D, S2D, or
AMP data file) or Third-order intercept data or
one or more power parameters, in the block
dialog box.

S-Parameters Amplifier

Y-Parameters Amplifier

Z-Parameters Amplifier

Third-order intercept data or one or more power
parameters, in the block dialog box.

General Mixer You can choose either of the following
specifications: Power data (using a P2D, S2D, or
AMP data file) or Third-order intercept data or
one or more power parameters, in the block
dialog box.

S-Parameters Mixer

Y-Parameters Mixer

Z-Parameters Mixer

Third-order intercept data or one or more power
parameters, in the block dialog box.

Add Nonlinearity to Your System
To simulate the nonlinearity of an amplifier or mixer, you must specify or import nonlinearity data at
one or more frequency points into the block.

The method you use to add nonlinearity data to a block depends on whether you specify the data
manually or import the data into a block.

The following table provides instructions for adding nonlinearity data.

5 Model an RF System

5-14

Nonlinearity Specification Instructions
IP3 In the Nonlinearity Data tab of the block dialog box:

• Set the IP3 type parameter to IIP3 or OIP3.
• Enter input third-order intercept values at one or more

frequency points in the IP3 (dBm) parameter.
• Enter corresponding frequency values in the Frequency

(Hz) parameter.
Power parameters Enter the gain compression power in the 1 dB gain

compression power (dBm) parameter or the saturation
power in the Output saturation power (dBm) parameter.

If you choose a scalar value for the Frequency (Hz)
parameter, then you must also use scalar values for the
power parameters.

If you choose a vector value for the Frequency (Hz)
parameter, then you can use either scalar or vector values
for the power parameters.

Power data (from a file) Import file data that includes power information into the
Data file or RFCKT object parameter of the General
Amplifier or General Mixer block.

Note If you import file data with no power information into a General Amplifier or General Mixer
block, the Nonlinearity Data tab lets you add nonlinearity data manually in the block dialog box.

For information on how the blockset simulates nonlinearity data of an amplifier or mixer, see the
block reference page.

See Also

More About
• “User-Defined Nonlinear Amplifier Model” on page 8-138

 Model Nonlinearity

5-15

Model Noise
In this section...
“Amplifier and Mixer Noise Specifications” on page 5-16
“Add Noise to Your System” on page 5-17
“Plot Noise” on page 5-20

Amplifier and Mixer Noise Specifications
You only need to specify noise information for the physical amplifier and mixer blocks that generate
noise other than resistor noise. For the other blocks, the blockset calculates the noise automatically
based on the resistor values.

You define noise for the physical amplifier and mixer blocks through one of the following
specifications:

• Spot noise data in the data source.
• Spot noise data in the block dialog box.
• Spot noise data (rfdata.noise) object in the block dialog box.
• Frequency-independent noise figure, noise factor, or noise temperature value in the block dialog

box.
• Frequency-dependent noise figure data (rfdata.nf) object in the block dialog box.

The following table summarizes the noise specification options for each type of physical amplifier and
mixer block.

Block Noise Specification
General Amplifier Spot noise data (using a Touchstone, P2D, S2D, or

AMP data file)

OR

Spot noise data, noise figure value, noise factor
value, noise temperature value, rfdata.noise,
or rfdata.nf object in the block dialog box

S-Parameters Amplifier

Y-Parameters Amplifier

Z-Parameters Amplifier

Spot noise data, noise figure value, noise factor
value, noise temperature value, rfdata.noise,
or rfdata.nf object in the block dialog box

General Mixer Spot noise data (using a Touchstone, P2D, S2D, or
AMP data file)

OR

Spot noise data, noise figure value, noise factor
value, noise temperature value, rfdata.noise,
or rfdata.nf object in the block dialog box

5 Model an RF System

5-16

Block Noise Specification
S-Parameters Mixer

Y-Parameters Mixer

Z-Parameters Mixer

Spot noise data, noise figure value, noise factor
value, noise temperature value, rfdata.noise,
or rfdata.nf object in the block dialog box

Add Noise to Your System
To simulate the noise of a physical subsystem, you perform the following tasks:

• “Specify or Import Noise Data” on page 5-17
• “Add Noise to the Simulation” on page 5-18

Specify or Import Noise Data

The method you use to add noise data to a block depends on whether you are specifying noise data
manually or importing spot-noise data.

The following table provides instructions for adding noise data.

Noise Specification Instructions
Frequency-independent noise figure In the Noise Data tab of the block dialog box, set

the Noise type parameter to Noise figure,
and enter the noise figure value in the Noise
figure (dB) parameter.

Frequency-dependent noise figure In the Noise Data tab of the block dialog box, set
the Noise type parameter to Noise figure,
and enter the name of the rfdata.nf object in
the Noise figure (dB) parameter.

Noise factor In the Noise Data tab of the block dialog box, set
the Noise type parameter to Noise factor,
and enter the noise factor value in the Noise
factor parameter.

Noise temperature In the Noise Data tab of the block dialog box, set
the Noise type parameter to Noise
temperature, and enter the noise temperature
value in the Noise temperature (K) parameter.

Spot noise data (in a block dialog box) In the Noise Data tab of the block dialog box, set
the Noise type parameter to Spot noise data.
Enter the spot noise information in the Minimum
noise figure (dB), Optimal reflection
coefficient, and Equivalent normalized noise
resistance parameters.

Spot noise data (from a data object) In the Noise Data tab of the block dialog box, set
the Noise type parameter to Noise figure and
enter the name of the rfdata.noise object in
the Noise figure (dB) parameter.

 Model Noise

5-17

Noise Specification Instructions
Spot noise data (from a file) Import file data that includes noise information

into the Data file or RFCKT object parameter of
the General Amplifier or General Mixer block.

Note If you import file data with no noise information into a General Amplifier or General Mixer
block, the Noise Data tab lets you add noise data manually in the block dialog box.

Add Noise to the Simulation

To include noise in the simulation, you must select the Add noise check box on the Input Port block
dialog box. This check box is selected by default.

5 Model an RF System

5-18

For information on how the blockset simulates noise, see “Model Noise in an RF System” on page A-
5.

 Model Noise

5-19

Plot Noise
RF Blockset Equivalent Baseband software models communications systems. The noise in these
systems has a very small amplitude, typically from 1e-6 to 1e-12 Watts. In contrast, the default signal
power of a Communications Toolbox modulator block is 1 Watt at a nominal 1 ohm. Therefore, the
signal-to-noise ratio in an RF system simulation is large, making it difficult to view the noise that the
RF system adds to your signal.

To display the noise on a plot, you might need to attenuate the signal amplitude to a value within a
couple orders of magnitude of the noise.

For example, suppose you have the following model that contains a multitone test signal source.

When you simulate this model, Simulink brings up several windows showing the input and output for
the physical subsystem. The Input - Frequency Domain window shown in the following figure displays
the input signal in the frequency domain.

5 Model an RF System

5-20

Input Signal Spectrum

The Real Part of Input - Time Domain window displays the real part of the complex-valued input
signal in the time domain.

Real Part of Input Signal

In the model, the physical subsystem adds noise to the input signal. The Output - Frequency Domain
window shows the noisy output signal in the frequency domain.

 Model Noise

5-21

Output Signal Spectrum

The amplitude of the signal is large compared to the amplitude of the noise, so the noise is not visible
in the Real Part of Output - Time Domain window that shows the real part of the time-domain output
signal. Therefore, you must attenuate the amplitude of the input signal to display the noise of the
time-domain output signal.

Real Part of Output Signal

Attenuate the amplitude of the input signal by setting the Gain parameter to 1e-3. This is equivalent
to attenuating the input signal by 60 dB. When you run the model again, the two signal peaks are not
as pronounced in the Output - Frequency Domain window.

5 Model an RF System

5-22

Output Signal Spectrum for Attenuated Input

You can now view the noise that the RF system adds to your signal in the Real Part of Output - Time
Domain window.

Real Part of Output Signal Showing Noise

See Also
Input Port | Output Port | General Amplifier

More About
• “Model Nonlinearity” on page 5-14
• “Noise in RF Systems” on page 2-7

 Model Noise

5-23

Plot Model Data

• “Create Plots” on page 6-2
• “Update Plots” on page 6-20
• “Modify Plots” on page 6-21
• “Create and Modify Subsystem Plots” on page 6-23

6

Create Plots
In this section...
“Available Data for Plotting” on page 6-2
“Validate Individual Blocks and Subsystems” on page 6-2
“Types of Plots” on page 6-3
“Plot Formats” on page 6-3
“How to Create a Plot” on page 6-10
“Example — Plot Component Data on a Z Smith Chart” on page 6-16

Available Data for Plotting
RF Blockset Equivalent Baseband software lets you validate the behavior of individual RF
components and physical subsystems in your model by plotting the following data:

• Large- and small-signal S-parameters
• Noise figure, noise factor and noise temperature
• Output third-order intercept point
• Power data
• Phase noise
• Voltage standing-wave ratio
• Transfer function
• Group delay
• Reflection coefficients

Note When you plot information about a physical block, the blockset plots the actual frequency
response of the block, as specified in the block dialog box. The blockset does not plot the frequency
response of the complex-baseband model that it uses to simulate the block, in which the frequency
response is centered at zero.

Validate Individual Blocks and Subsystems
You can plot model data for an individual physical block or for a physical subsystem. A subsystem is a
collection of one or more physical blocks bracketed by an Input Port block and an Output Port block.
To understand the behavior of specific subsystems, plot the data of the corresponding Output Port
block after you run a simulation.

To validate the behavior of individual RF components in the model, plot the data of the corresponding
physical blocks. You can plot data for individual blocks from each of these components either before
or after you run a simulation.

You create a plot by selecting options in the block dialog box, as shown in “Create and Modify
Subsystem Plots” on page 6-23. To learn about the available plots, see “Types of Plots” on page 6-
3. For more information about creating plots, see “How to Create a Plot” on page 6-10.

6 Plot Model Data

6-2

Types of Plots
RF Blockset Equivalent Baseband software provides a variety of plots for analyzing the behavior of
RF components and subsystems. The following table summarizes the available plots and charts and
describes each one.

Plot Type Plot Contents
X-Y Plane (Rectangular) Plot Parameters as a function of frequency, input power, or operating

condition, such as

• S-parameters
• Noise figure (NF), Noise factor (NFactor), and Noise Temperature

(NTemp)
• Voltage standing-wave ratio (VSWR)
• Output third-order intercept point (OIP3)
• Input and output reflection coefficients (GammaIn and GammaOut)

Link Budget Plot (3-D) Parameters as a function of frequency for each component in a
physical subsystem

where

The curve for a given component represents the cumulative
contribution of each RF component up to and including the parameter
value of that component.

For more information, see “Link Budget” on page 6-8.
Polar Plane Plot Magnitude and phase of parameters as a function of frequency or

operating condition, such as

• S-parameters
• Input and output reflection coefficients (GammaIn and GammaOut)

Smith® Chart Real and imaginary parts of S-parameters as a function of frequency
or operating condition, used for analyzing the reflections caused by
impedance mismatch.

Composite Plot Multiple plots and charts in one figure.

To learn how to create these plots, see “How to Create a Plot” on page 6-10.

Plot Formats
When you create a plot from a block dialog box, you must specify the format of the data for both the
x- and y-axes.

 Create Plots

6-3

These plot options define how RF Blockset Equivalent Baseband software displays the data on the
plot.

The available formats vary with the data you select to plot. The data you can plot depends on the plot
type you select. The plot formats determine whether the blockset converts the data to a new set of
units, or performs a calculation on the data. For example, setting the format to Real tells the
blockset to compute and plot the real part of the parameter.

The following topics describe the available parameters and formats for each plot type:

• “Composite Data” on page 6-4
• “X-Y Plane” on page 6-6
• “Link Budget” on page 6-8
• “Polar Plane Plots and Smith Charts” on page 6-9

Composite Data

The composite data plot automatically generates four separate plots in one figure window, showing
the frequency dependence of several parameters. The following figure shows an example of such a
plot.

6 Plot Model Data

6-4

Example — Composite Data Plot

Note For composite data plots, you do not need to specify the parameters or the formats—they are
set automatically.

The combination of plots differs based on the type of block and the specified block data. The following
table describes the contents of the composite data plot for each specification. The Plot Contents
column lists the types of plots as they appear on the composite plot, counterclockwise and starting in
the upper-left corner. The blockset plots all data as a function of frequency.

Block Specified Data Plot Contents
General
Amplifier or
General Mixer

Network parameters

OR

Network parameters and noise

• X-Y plot, magnitude of S12 and S21 in
decibels

• X-Y plot, phase of S12 and S21 in degrees
• Z Smith Chart, real and imaginary parts

of S11 and S22

• Polar plot, magnitude and phase of S11
and S22

Network parameters and power

OR

Network parameters, noise, and
power

• X-Y plot, magnitude of S12 and S21 in
decibels

• X-Y plot, output power (Pout) in dBm
(decibels referenced to one milliwatt)

• Z Smith Chart, real and imaginary parts
of S11 and S22

• Polar plot, magnitude and phase of S11
and S22

 Create Plots

6-5

Block Specified Data Plot Contents
Other Physical
block

Network parameters

OR

Network parameters and noise (S-, Y-,
and Z-Parameters Amplifiers and
Mixers only)

Note Only the General Amplifier and
General Mixer blocks accept power
data.

• X-Y plot, magnitude of S12 and S21 in
decibels

• X-Y plot, phase of S12 and S21 in degrees
• Z Smith Chart, real and imaginary parts

of S11 and S22

• Polar plot, magnitude and phase of S11
and S22

X-Y Plane

You can plot any parameters that are relevant to your block on an X-Y plane plot. For this type of plot,
you specify data for both the x- and y-axes. If you specify two Y parameters, and you specify different
formats for the two Y parameters, the blockset plots the second Y parameter on the right y-axis.

The following table summarizes the available Y parameters and formats. The parameters and formats
are the same for both the left and right y-axes.

Note LS11, LS12, LS21, and LS22 are large-signal S-parameters. You can plot these parameters as a
function of input power or as a function of frequency.

Y Parameter Y Format
S11, S12, S21, S22

LS11, LS12, LS21, LS22 (General Amplifier and
General Mixer blocks with multiple operating
conditions only)

Magnitude (decibels)
Magnitude (linear)
Angle (degrees)
Angle (radians)
Real
Imaginary

NF Magnitude (decibels)
NFactor None

This format tells the blockset to plot the noise
factor as it is specified to or calculated by the
block.

NTemp Kelvin
OIP3 dBm

dBW
W
mW

VSWRIn, VSWROut Magnitude (decibels)
None
This format tells the blockset to plot the voltage
standing-wave ratio as it is specified to or
calculated by the block.

6 Plot Model Data

6-6

Y Parameter Y Format
Pout (General Amplifier and General Mixer
blocks with power data only)

dBm
dBW
W
mW

Phase (General Amplifier and General Mixer
blocks with power data only)

Angle (degrees)
Angle (radians)

AM/AM (General Amplifier and General Mixer
blocks with power data only)

Magnitude (decibels)
None
This format tells the blockset to plot the AM/AM
conversion as it is specified to or calculated by
the block.

AM/PM (General Amplifier and General Mixer
blocks with power data only)

Angle (degrees)
Angle (radians)

PhaseNoise (Mixer blocks only) dBc/Hz
FMIN (Amplifier and Mixer blocks with spot noise
data only)

Magnitude (decibels)
None
This format tells the blockset to plot the minimum
noise figure as it is specified to or calculated by
the block.

GammaIn, GammaOut(Output Port block only) Magnitude (decibels)
Magnitude (linear)
Angle (degrees)
Angle (radians)
Real
Imaginary

GAMMAOPT (Amplifier and Mixer blocks with spot
noise data only)

Magnitude (decibels)
Magnitude (linear)
Angle (degrees)
Angle (radians)
Real
Imaginary

RN (Amplifier and Mixer blocks with spot noise
data only)

None
This format tells the blockset to plot the noise
resistance as it is specified to or calculated by the
block.

The available X parameters depend on the Y parameters you select. The following table summarizes
the available X parameters for each of the Y parameters in the preceding table.

Y Parameter X Parameter
Pout, Phase, LS11, LS12, LS21, LS22 Pin

Freq
S11, S12, S21, S22, NF, OIP3, VSWRIn, VSWROut,
GAMMAIn, GAMMAOut, FMIN, GAMMAOPT, RN

Freq

AM/AM, AM/PM AM

 Create Plots

6-7

The following table shows the X formats that are available for the X parameters listed in the
preceding table.

X Parameter X Format
Pin dBm

dBW
W
mW

Freq THz
GHz
MHz
KHz
Hz
Auto (xformat is chosen to provide the best
scaling for the given xparameter values.)

AM Magnitude (dB)
Magnitude (linear)

When you import block data from a .p2d or .s2d file, you can also plot Y parameters as a function of
any operating condition from the file that has numeric values, such as bias. You can specify an
operating condition as the X parameter only when validating individual blocks, and the format is
always None. This format tells the blockset to plot the operating condition values as they are
specified in the file.

Link Budget

You use the Link budget plot to understand the individual contribution of each block to a plotted Y
parameter value in a physical subsystem with multiple components between the Input Port and the
Output Port blocks.

The link budget plot is a three-dimensional plot that shows one or more curves of parameter values as
a function of frequency, ordered by the subsystem circuit index.

The following figure shows how the circuit index is assigned to a component in a physical subsystem
based on its sequential position in the subsystem.

A curve on the link budget plot for each circuit index represents the contributions to the parameter
value of the RF components up to that index. The following figure shows an example of a link budget
plot.

6 Plot Model Data

6-8

Example — Link Budget Plot

The following table summarizes the Y parameters and formats that are available for a link budget
plot.

Y Parameter Y Format
S11, S12, S21, S22 Magnitude (decibels)

Magnitude (linear)
Angle (degrees)
Real
Imaginary

OIP3 dBm
dBW
W
mW

NF Magnitude (decibels)
Magnitude (linear)

NFactor None
This format tells the blockset to plot the noise
factor as it is specified to the block.

NTemp Kelvin

If you specify two Y parameters, the blockset puts both parameters in a single plot. The Y parameters
must have the same formats.

For a link budget plot, the X parameter is always Freq. The format of the X parameter specifies the
units of the x-axis.

Polar Plane Plots and Smith Charts

You can use RF Blockset Equivalent Baseband software to generate Polar plots and Smith Charts.
When you select these plot types, you do not need to specify the format of any Y parameters—the
formats are set automatically. If you specify two Y parameters, the blockset puts both parameters in a
single plot.

 Create Plots

6-9

The following table describes the Polar plot and Smith Chart options. It also lists the available Y
parameters.

Plot Type Y Parameter
Polar plane S11, S12, S21, S22

LS11, LS12, LS21, LS22 (General Amplifier and
General Mixer blocks with data from a P2D file
only)

GammaIn, GammaOut (Output Port block only)
Z Smith chart S11, S22

LS11, LS22 (General Amplifier and General
Mixer blocks with data from a P2D file only)

GammaIn, GammaOut (Output Port block only)
Y Smith chart S11, S22

LS11, LS22 (General Amplifier and General
Mixer blocks with data from a P2D file only)

GammaIn, GammaOut (Output Port block only)
ZY Smith chart S11, S22

LS11, LS22 (General Amplifier and General
Mixer blocks with data from a P2D file only)

GammaIn, GammaOut (Output Port block only)

By default, the X parameter is Freq. The format of the X parameter specifies the units of the x-axis.
When you import block data from a .p2d or .s2d file, you can also plot Y parameters as a function of
any operating condition from the file that has numeric values, such as bias. You can specify an
operating condition as the X parameter only when validating individual blocks, and the format is
always None.

How to Create a Plot
1 Double-click the block to open the block dialog box, and select the Visualization tab. The

following figure shows the contents of the tab.

6 Plot Model Data

6-10

2 Select the Source of frequency data.

This value is the source of the frequency values at which to plot block data. The following table
summarizes the available types of sources for the various types of blocks.

 Create Plots

6-11

Source of
frequency data

Description Blocks

User-specified Vector of frequencies that you enter.

When you select User-specified in the
Source of frequency data list, the
Frequency range (Hz) field is displayed.
Enter a vector specifying the range of
frequencies you want to plot.

For example, to plot block data from 0.3
MHz to 5 GHz by 0.1 MHz, enter
[0.3e6:0.1e6:5e9].

Note When you select PhaseNoise in
the Parameter list and User-
specified in the Source of frequency
data list, the Frequency range (Hz)
field is disabled. You use the Phase noise
frequency offset (Hz) block parameter
to specify the frequency values at which
to plot block data.

All physical blocks

Derived from
Input Port
parameters
(Available after
running a simulation
or clicking the
Update Diagram
button)

Modeling frequencies derived from the
Input Port block parameters. For
information on how the blockset
computes the modeling frequencies, see
“Determine Modeling Frequencies” on
page A-3.

All physical blocks

Same as the S-
parameters

Frequency values specified in the
Frequency block parameter

S-Parameters Passive
Network, S-Parameters
Amplifier, S-Parameters
Mixer

Same as the Y-
parameters

Frequency values specified in the
Frequency block parameter.

Y-Parameters Passive
Network, Y-Parameters
Amplifier, Y-Parameters
Mixer

Same as the Z-
parameters

Frequency values specified in the
Frequency block parameter.

Z-Parameters Passive
Network, Z-Parameters
Amplifier, Z-Parameters
Mixer

Extracted from
data source

Frequency values imported into the Data
file or RFDATA object block parameter.

General Passive Network,
General Amplifier, and
General Mixer

3 Enter the Reference impedance.

6 Plot Model Data

6-12

This value is the reference impedance to use when plotting small-signal parameters.
4 Select the Plot type.

This value is the type of plot. For a description of the options, see “Types of Plots” on page 6-3.
5 Select the following parameters:

• Y Parameter1 — The first parameter for the Y-axis.
• Y Parameter2 — The second parameter for the Y-axis (optional).
• X Parameter — The parameter for the X-axis.

 Create Plots

6-13

These parameters specify the data to be plotted. The available choices vary with the type of plot.
For a description of the options for a particular plot type, see the topic on that plot type in “Plot
Formats” on page 6-3.

6 If you select a large-signal parameter for one or more y-axis parameters, select the Source of
power data.

Note Large-signal parameters are available only for General Amplifier or General Mixer blocks
that contain power data.

This value is the source of the input power values at which to plot block data. The following table
summarizes the available types of sources for the General Amplifier and General Mixer blocks.

Source of frequency data Description
Extracted from data source Input power values imported into the Data

file or RFDATA object block parameter.

6 Plot Model Data

6-14

Source of frequency data Description
User-specified Vector of power values that you enter.

When you select User-specified in the
Source of power data list, the Input power
data (dBm) field is displayed. Enter a vector
specifying the range of power values you
want to plot.

For example, to plot block data from 1 dBm
to 10 dBm by 2 dBm, enter [1:2:10].

7 Select the following formats:

• Y Format1 — The format for the first Y parameter.
• Y Format2 — The format for the second Y parameter (optional).
• X Format — The format for the X parameter.

These are the X and Y formats for plotting the selected parameter. The available choices vary
based on the selected parameter. For a description of the options for a particular plot type, see
the topic on that plot type in “Plot Formats” on page 6-3.

8 Select the X Scale and Y Scale.

 Create Plots

6-15

These are the scales on which to plot the data. The available choices are Linear and Log.
9 Click Plot.

Note By default, the blockset does not add a legend to some plots. To display the plot legend, type
legend show at the MATLAB prompt.

Example — Plot Component Data on a Z Smith Chart
In this example, you simulate the frequency response of an amplifier using data from the
default.s2d S2D file.

Using a RF Blockset Equivalent Baseband example model, you import the data file into a General
Amplifier block and validate the amplifier by plotting the S-parameters of the block on a Z Smith
Chart.

1 Type sparam_amp at the MATLAB prompt to open the “AMP Data File for Amplifier” example.

6 Plot Model Data

6-16

2 Double-click the General Amplifier block to display its parameters.

As shown in the preceding figure, the Data source parameter is set to Data fileand the Data
file parameter is set to default.s2d. These values tell the blockset to import data from the file
default.s2d. The block uses this data, along with the other block parameters, in simulation.

3 Select the Visualization tab and set the General Amplifier block parameters as follows:

 Create Plots

6-17

• In the Plot type list, select Z Smith chart.
• In the Y Parameter1 list, select S22.

4 Click Plot.

This action creates a Z Smith Chart of the S22 parameters using the frequency data from the
default.s2d file.

6 Plot Model Data

6-18

General Amplifier Frequency Response

Note To display data tips for a plotted line, select Tools > Data Cursor. Click the data cursor on the
plotted line to see the frequency and the parameter value at that point. See the MATLAB
documentation for more information.

See Also

More About
• “Modify Plots” on page 6-21
• “Update Plots” on page 6-20
• “Create and Modify Subsystem Plots” on page 6-23

 Create Plots

6-19

Update Plots
When you run a simulation, the blockset continues to display any open plots, but does not update the
plots to reflect new simulation results. You must update the subsystem plots after the simulation to
display the behavior of the revised subsystem.

When you make changes to the parameters of blocks that represent individual RF components, you
need to update any open plots, because the blockset does not automatically redraw the plots.

To update an existing plot:

1 Double-click the block to open the block dialog box, and select the Visualization tab.

Example Block Dialog Box Showing Visualization Tab
2 Click Plot.

See Also

More About
• “Create Plots” on page 6-2
• “Modify Plots” on page 6-21
• “Create and Modify Subsystem Plots” on page 6-23

6 Plot Model Data

6-20

Modify Plots
You can modify an existing plot by changing the plot options. The outcome depends on the parameter
you change.

The following table summarizes the results of changing the plot options.

Block Parameter Plot Change
Source of frequency data

OR

Frequency data (Hz)

Redraws plot using the new frequency data.

Source of power data

OR

Input power data (dBm)

Redraws plot using the new power data.

Plot type Draws plot in a new figure using the new plot type.

Note If the current plot options are valid for the new plot type,
they retain their values. Otherwise, they revert to their default
values.

Y Parameter1

OR

Y Parameter2

If the new parameter has the same independent variable and
format as the one on the plot, the blockset adds the new
parameter to the existing plot. Otherwise, it redraws the plot for
the new parameter and independent variable.

Y Format1

OR

Y Format2

Redraws plot using the new format.

X Parameter Redraws plot using the new independent variable.
X Format Redraws plot using the new format.
X Scale Redraws plot using the new scale.
Y Scale Redraws plot using the new scale.

To modify a plot:

1 Double-click the block to open the block dialog box, and select the Visualization tab.

 Modify Plots

6-21

Example Block Dialog Box Showing Plot Parameters
2 Change the plot options.
3 Click Plot.

See Also

More About
• “Create and Modify Subsystem Plots” on page 6-23
• “Create Plots” on page 6-2
• “Update Plots” on page 6-20

6 Plot Model Data

6-22

Create and Modify Subsystem Plots

This example shows how to create and modify plots in an equivalent baseband subsystem.

Plot Network Parameters of Subsystem

In this part of the example, you open and run a RF Blockset™ equivalent baseband example that uses
data file to specify an amplifier in a physical subsystem. Then, you plot the network parameters of the
physical subsystem, which consists of the General Amplifier, the Input Port, and the Output Port
blocks.

Open the AMP Data File for Amplifier model.

In the model window, click Run to run the simulation.

Double-click the Output Port block to open the block mask. Select the Visualization tab and set the
Output Port block parameters as follows:

 Create and Modify Subsystem Plots

6-23

• Source of frequency data — Derived from Input Port parameters
• Plot type — X-Y plane
• Y Parameter1 — S21

Click Plot to plot the magnitude of S21 (in decibels) as a function of frequency on an X-Y plot.

Add Data to Existing Plot

In this part of the example, you add data to the plot you created in Plot Network Parameters of
Subsystem section.

Double-click the Output Port block to open the block mask. Select the Visualization tab and set the Y
Parameter1 to S22. Click Plot to add S22 to the S21 plot.

6 Plot Model Data

6-24

Change Data on an Existing Plot

In this part of the example, you change the data on the plot you created in the previous steps of the
example by modifying the Plot type.

Double-click the Output Port block to open the block mask. Select the Visualization tab and set Plot
type to Polar plane . Click Plot to create a Polar plane plot of S22 as a function of frequency.

 Create and Modify Subsystem Plots

6-25

In the Output Port block, change the Plot type to Composite data to generate four plots in one
figure. The parameters for the plots are defined by the block, so the Y Parameter1, Y Parameter2,
and X Parameter parameters are not enabled.

6 Plot Model Data

6-26

Composite plot displays magnitude, phase, polar, and Z-Smith chart.

See Also

More About
• “Modify Plots” on page 6-21
• “Create Plots” on page 6-2
• “Update Plots” on page 6-20

 Create and Modify Subsystem Plots

6-27

RF Blockset Equivalent Baseband
Algorithms

A

Simulate an RF Model
When you simulate a model that contains physical blocks, RF Blockset Equivalent Baseband software
determines the modeling frequencies of the physical system using the Input Port block parameters.
The modeling frequencies are the frequencies at which the blockset takes information from the
blocks to construct the baseband-equivalent model. Then, the software determines the block
parameter values at those frequencies and uses the information to create a baseband-equivalent
model for Simulink time-domain simulation.

A Simulate an RF Model

A-2

Determine Modeling Frequencies
When you simulate an RF model, the Output Port block uses Input Port block parameters to
determine the modeling frequencies f for the physical system that is bracketed between the Input
Port block and the Output Port block. f is an N-element vector, where N is the finite impulse response
filter length. The modeling frequencies are a function of the center frequency fc and the sample time
ts. The following figure shows the Input Port block parameters that determine the modeling
frequencies.

fn is the nth element of the vector of modeling frequencies, f, and is given by

fn = fmin + n− 1
tsN

n = 1, ..., N

where

fmin = fc−
1

2ts

 Determine Modeling Frequencies

A-3

Map Network Parameters to Modeling Frequencies
In a physical system, each block provides network parameters at different frequencies. These
frequencies are not necessarily the modeling frequencies for the physical system in which the block
resides. To create a baseband-equivalent model, RF Blockset Equivalent Baseband software must
calculate the values of the S-parameters at the modeling frequencies.

Individual physical blocks calculate the S-parameters at the modeling frequencies determined by the
Input Port block parameters. Each block interpolates its S-parameters to determine the S-parameters
at the modeling frequencies. If the block contains network Y- or Z-parameters, it first converts them
to S-parameters.

Specifically, the block orders the S-parameters in the ascending order of their frequencies, fn. Then, it
interpolates the S-parameters using the MATLAB interp1 function. For example, the curve in the
following diagram illustrates the result of interpolating the S11 parameters at original frequencies f1
through f5.

The Interpolation method field in the individual block dialog boxes enables you to specify the
interpolation method as Cubic, Linear (default), or Spline. For more information about these
methods, see the interp1 reference page in the MATLAB documentation.

As shown in the previous diagram, each block uses the parameter values at fmin for all modeling
frequencies smaller than fmin. The block uses the parameter values at fmax for all modeling frequencies
greater than fmax. In both cases, the results may not be accurate, so you need to specify network
parameter values over a range of frequencies that is wide enough to account for the block behavior.

A Map Network Parameters to Modeling Frequencies

A-4

Model Noise in an RF System
In this section...
“Output-Referred Noise in RF Models” on page A-5
“Calculate Noise Figure at Modeling Frequencies” on page A-6
“Calculate System Noise Figure” on page A-7
“Calculate Output Noise Power” on page A-8

The RF Blockset Equivalent Baseband Physical library blocks can model noise. The Input Port block
parameters specify whether to include noise in a simulation. When you include noise information in
your model, the blockset simulates the noise of the physical system by combining the noise
contributions from each individual block. This section explains how the blockset simulates noise from
user-specified information. For information on how to add noise to an RF model, see “Model Noise”
on page 5-16.

Output-Referred Noise in RF Models
In general, you can specify output-referred noise in one of three ways:

• Noise temperature — Specifies the noise in kelvin.
• Noise factor — Specifies the noise by the following equation:

Noise factor = 1 + Noise temperature
290

• Noise figure — Specifies the noise in decibels relative to the standard reference noise
temperature of 290 K. In terms of noise factor

Noise figure = 10log(Noise factor)

These three specifications are equivalent, because you can compute each one from any of the others.

The blockset lets you simulate the noise associated with any physical block in your RF model.

The blockset automatically determines the noise properties of passive blocks from their network
parameters. The blockset gets these network parameters either explicitly from the block dialog box
or specified data files, or implicitly by calculating them from the specified block parameters.

For active devices such as amplifiers and mixers, the noise properties cannot be inferred from
network parameters. Therefore, for the amplifier and mixer blocks, you must specify the noise
information explicitly, either in the dialog block or the associated data file.

For physical amplifier and mixer blocks, you can specify active block noise in one of the following
ways:

• Spot noise data
• Frequency-independent noise figure, noise factor, or noise temperature values
• Frequency-dependent noise figure data (rfdata.nf) or spot noise data (rfdata.noise) object

These noise specification options are described in “Amplifier and Mixer Noise Specifications” on page
5-16.

 Model Noise in an RF System

A-5

When you run the simulation, the blockset first computes the noise figure values for each individual
block at the modeling frequencies. Then, it computes the noise figure of the physical system from the
individual noise figure values and uses the system noise figure information to calculate the output
noise power. This process is shown in the following figure.

Calculate Noise Figure at Modeling Frequencies
To include noise information in a simulation, the blockset must compute the noise figure values of
each individual block at the modeling frequencies.

If you specify the frequency-independent noise figure value directly, or if the blockset computes the
noise figure value from the block resistance, the blockset uses this value for the noise figure value at
each of the modeling frequencies.

A Model Noise in an RF System

A-6

If you specify the noise factor or noise temperature value, the blockset computes the noise figure
value from the specified value using the equations in the preceding section and uses the computed
value for the noise figure value at each of the modeling frequencies.

If you specify frequency-dependent noise figure values using an rfdata.nf object, the blockset
interpolates the values using the Interpolation method specified in the block dialog box to get the
noise figure value at each of the modeling frequencies.

If you specify spot noise data, the blockset computes frequency-dependent noise figure information
from this data. It takes the minimum noise figure, NFmin, equivalent noise resistance, Rn, and optimal
source admittance, Yopt, values in the file and interpolates to find the values at the modeling
frequencies. Then, the blockset uses the following equation to calculate the noise correlation matrix,
CA:

CA = 2kT
Rn

NFmin− 1
2 − RnYopt∗

NFmin− 1
2 − RnYopt Rn Yopt

2

where k is Boltzmann's constant, and T is the noise temperature in Kelvin.

The blockset then calculates the noise factor, F, from the noise correlation matrix as follows:

F = 1 +
z+CAz

2kTRe ZS

z =
1

ZS*

In the two preceding equations, ZS is the nominal impedance, which is 50 ohms, and z+ is the
Hermitian conjugation of z.

The blockset obtains the noise figure, NF, from the noise factor:

NF = 10log(F)

Calculate System Noise Figure
The blockset uses a recursive process to calculate system noise figure. The noise correlation matrices
for the first two elements of the cascade are combined into a single matrix, and the process is
repeated.

The following figure shows a cascaded network consisting of two 2-port networks, each represented
by its ABCD-parameters.

First, the blockset calculates noise correlation matrices CA' and CA” for the two networks. Then, the
blockset combines CA′ and CA″ into a single correlation matrix CA using the equation

CA = CA′ +
A′ B′
C′ D′

CA″
A′ B′
C′ D′

 Model Noise in an RF System

A-7

The ABCD-parameter matrices in the cascade combine according to matrix multiplication:

A B
C D

=
A′ B′
C′ D′

A″ B″
C″ D″

If there is another element in the cascade, the same calculations will be performed using these
ABCD-parameters as well as the ABCD-parameters corresponding to the following element. The
recursion will terminate with a noise correlation matrix pertaining to the entire system. The blockset
then calculates the system noise figure from this matrix.

For more information about these calculation techniques, see the following article:

Hillbrand, H. and P.H. Russer, “An Efficient Method for Computer Aided Noise Analysis of Linear
Amplifier Networks,” IEEE Transactions on Circuits and Systems, Vol. CAS-23, Number 4, pp. 235–
238, 1976.

Calculate Output Noise Power
The blockset uses noise power to determine the amplitude of the noise that it adds to the physical
system using a Gaussian distributed pseudorandom number generator. It uses both the noise
temperature and the modeling bandwidth to calculate the noise power:

Noise power = kTB

where k is Boltzmann's constant, T is the noise temperature in Kelvin, and B is the bandwidth in
hertz.

The blockset computes noise temperature from the specified or calculated noise figure values for the
system, and it computes the modeling bandwidth from the model's sample time and center frequency.

A Model Noise in an RF System

A-8

Create Complex Baseband-Equivalent Model

In this section...
“Baseband-Equivalent Modeling” on page A-9
“Simulation Efficiency of a Baseband-Equivalent Model” on page A-12
“Example — Select Parameter Values for a Baseband-Equivalent Model” on page A-12

Baseband-Equivalent Modeling
RF Blockset Equivalent Baseband software simulates the physical system in the time domain using a
complex baseband-equivalent model that it creates from the passband frequency-domain parameters
of the physical blocks. This type of modeling is also known as lowpass equivalent (LPE), complex
envelope, or envelope modeling.

To create a complex baseband-equivalent model in the time domain based on the network parameters
of the physical system, the blockset performs a mathematical transformation that consists of the
following three steps:

1 “Calculate the Passband Transfer Function” on page A-9
2 “Calculate the Baseband-Equivalent Transfer Function” on page A-11
3 “Calculate the Baseband-Equivalent Impulse Response” on page A-11

Calculate the Passband Transfer Function

The blockset calculates the passband transfer function from the physical block parameters at the
modeling frequencies by calculating the transfer function of the physical subsystem and then
applying the Tukey window to obtain the passband transfer function.

Note To learn how the blockset uses the specified network parameters to compute the network
parameters at the modeling frequencies, see “Map Network Parameters to Modeling Frequencies” on
page A-4.

The transfer function of the physical subsystem is defined as:

H(f) =
VL(f)
VS(f)

where VS and VL are the source and load voltages shown in the following figure, and f represents the
modeling frequencies.

 Create Complex Baseband-Equivalent Model

A-9

More specifically,

H(f) =
S21 1 + Γl 1− Γs

2 1− S22Γl 1− ΓinΓs

where

Γl =
Zl− Zo
Zl + Zo

Γs =
Zs− Zo
Zs + Zo

Γin = S11 + S12S21
Γl

1− S22Γl

and

• ZS is the source impedance.
• ZL is the load impedance.
• Sij are the S-parameters of a two-port network.

The blockset derives the transfer function of the physical subsystem from the Input Port block
parameters as shown in the following figure.

The blockset then applies the Tukey window to obtain the passband transfer function:

Hpassband(f) = H(f) ⋅ tukeywin(N, F)

A Create Complex Baseband-Equivalent Model

A-10

where tukeywin is the Signal Processing Toolbox™ tukeywin function.

Calculate the Baseband-Equivalent Transfer Function

The blockset calculates the baseband transfer function, Hbaseband(f), by translating the passband
transfer function to its equivalent baseband transfer function:

Hbaseband(f) = Hpassband(f + fc)

where fc is the specified center frequency.

The resulting baseband-equivalent spectrum is centered at zero, so the blockset can simulate the
system using a much larger time step than Simulink can use for the same system. For information on
why this translation allows for a larger time step, see “Simulation Efficiency of a Baseband-Equivalent
Model” on page A-12.

The baseband transfer function is shown in the following figure.

Calculate the Baseband-Equivalent Impulse Response

The blockset calculates the baseband-equivalent impulse response by performing the following steps:

1 Calculate the inverse FFT of the baseband transfer function. For faster simulation, the block
calculates the IFFT using the next power of 2 greater than the specified finite impulse response
filter length. Then, it truncates the impulse response to a length equal to the filter length
specified. When the finite impulse response is truncated to the length specified by the user, the
effect of the truncation is similar to windowing with a rectangular window.

2 Apply the delay specified by the Modeling delay (samples) parameter in the Input Port block
dialog box. Selecting an appropriate value for this delay ensures that the baseband-equivalent
model has a causal response by moving the time window such that the model energy is
concentrated at the center of the window, as shown in the following figure:

 Create Complex Baseband-Equivalent Model

A-11

Simulation Efficiency of a Baseband-Equivalent Model
The baseband-equivalent modeling technique improves simulation speed by allowing the simulator to
take larger time steps. To simulate a system in the time domain, Simulink would require a step size
of:

tstep = 1
2fmax

Using the baseband-equivalent model of the same system, whose spectrum has been shifted down by
fc, allows for a much larger time step of:

tstep = 1
2(fmax− fc)

= 1
fmax− fmin

Example — Select Parameter Values for a Baseband-Equivalent Model
• “Baseband-Equivalent Modeling Example Overview” on page A-13
• “Create the Model” on page A-13
• “Specify Model Parameters” on page A-15

A Create Complex Baseband-Equivalent Model

A-12

• “Run the Simulation and Analyze the Results” on page A-19
• “Reducing Acausal Response in the Baseband-Equivalent Model” on page A-19
• “Introduce Delay into the Baseband-Equivalent Model” on page A-20

Baseband-Equivalent Modeling Example Overview

In this example, you model an RF transmission line stimulated by a pulse and plot the baseband-
equivalent model that the blockset uses to simulate the transmission line in the time domain. You
compare the effects of using different parameter values for the baseband-equivalent model. This
example helps you understand how to use these parameters to best apply the baseband-equivalent
modeling paradigm of performing time-domain simulation using a limited band of frequency data.

Create the Model

In this part of the example, you perform the following tasks:

• “Select Blocks to Represent System Components” on page A-13
• “Build the Model” on page A-13
• “Specify Model Variables” on page A-14

Select Blocks to Represent System Components

In this part of the example, you select the blocks to represent:

• The input signal
• The RF transmission line
• The baseband-equivalent model display

The following table lists the blocks that represent the system components and a description of the
role of each block.

Block Description
Discrete Impulse Generates a frame-based pulse input signal.
Real-Imag to Complex Converts the real pulse signal into a complex pulse signal.
Input Port Establishes parameters that are common to all blocks in the RF

transmission line subsystem, including the source impedance of the
subsystem that is used to convert Simulink signals to the physical
modeling environment.

RLCG Transmission Line Models the signal attenuation caused by an RF transmission line.
Output Port Establishes parameters that are common to all blocks in the RF

transmission line subsystem. These parameters include the load
impedance of the subsystem, which is used to convert RF signals to
Simulink signals.

Complex to Magnitude-
Angle

Converts the complex signal from the Output Port block into
magnitude-angle format.

Build the Model

In this part of the example, you create a Simulink model, add blocks to the model, and connect the
blocks.

 Create Complex Baseband-Equivalent Model

A-13

1 Create a model.
2 Add to the model the blocks shown in the following table. The Library Path column of the table

specifies the hierarchical path to each block.

Block Library Path Quantity
Discrete Impulse DSP System Toolbox > Sources 1
Real-Imag to Complex Simulink > Math Operations 1
Input Port RF Blockset > Equivalent Baseband > Input/Output

Ports
1

RLCG Transmission Line RF Blockset > Equivalent Baseband > Transmission
Lines

1

Output Port RF Blockset > Equivalent Baseband > Input/Output
Ports

1

Complex to Magnitude-
Angle

Simulink > Math Operations 1

3 Connect the blocks as shown in the following figure.

Now you are ready to specify model variables.

Specify Model Variables

Type the following at the MATLAB prompt to set up workspace variables for the model:

t_s = 5e-10; % Sample time
f_c = 3e9; % Center frequency
taps = 64; % Filter length

Now you are ready to specify the block parameters.

A Create Complex Baseband-Equivalent Model

A-14

Specify Model Parameters

In this part of the example, you specify the following parameters to represent the behavior of the
system components:

• “Input Signal Parameters” on page A-15
• “Transmission Line Subsystem Parameters” on page A-16
• “Signal Display Parameters” on page A-18

Input Signal Parameters

You generate the frame-based complex pulse source signal using two blocks:

• The Discrete Impulse block generates a real pulse signal.
• The Real-Imag to Complex block converts the real signal to a complex signal.

Note All signals in the RF model must be complex to match the signals in the physical subsystem, so
you create a complex input signal.

1 In the Discrete Impulse block parameters dialog box:

• Set Sample time to t_s.
• Set Samples per frame to 2*taps.

2 Set the Real-Imag to Complex block Input parameter to Real. Changing this parameter changes
the number of block inputs from two to one, making the block fully connected.

 Create Complex Baseband-Equivalent Model

A-15

Transmission Line Subsystem Parameters

In this part of the example, you configure the blocks that model the RF filter subsystem—the Input
Port, Transmission Line, and Output Port blocks.

1 In the Input Port block parameters dialog box:

• Set Treat input Simulink signal as to Incident power wave.

This option tells the blockset to interpret the input signal as the incident power wave to the
RF subsystem, and not the source voltage of the RF subsystem.

Note If you use the default value for this parameter, the software interprets the input
Simulink signal as the source voltage. As a result, the source and the load that model the
Input Port and Output Port blocks, respectively, introduce 6 dB of loss into the physical system
at all frequencies. For more information on why this loss occurs, see the note in “Convert to
and from Simulink Signals” on page A-22.

• Set Finite impulse response filter length to taps.
• Set Center frequency to f_c.
• Set Sample time (s) to t_s.

This sample time is equivalent to a modeling bandwidth of 1/t_s seconds.
• Set Input Processing to Columns as channels (frame based).

A Create Complex Baseband-Equivalent Model

A-16

2 In the RLCG Transmission Line block parameters dialog box:

• Set Inductance per length (H/m) to 50.
• Set Capacitance per length (F/m) to .02.
• Set Frequency (Hz) to f_c.
• Set Transmission line length (m) to 0.5*t_s.

 Create Complex Baseband-Equivalent Model

A-17

3 Accept the default parameters for the Output Port block to use a load impedance of 50 ohms.

Signal Display Parameters

In this part of the example, you specify the parameters that set up the baseband-equivalent model
display. You use the Complex to Magnitude-Angle block to convert the RF subsystem output to
magnitude format.

1 Set the Complex to Magnitude-Angle block Output parameter to Magnitude. Changing this
parameter changes the number of block outputs from two to one, making the block fully
connected.

A Create Complex Baseband-Equivalent Model

A-18

Run the Simulation and Analyze the Results

Before you run the simulation, set the stop time. Click Simulation In the PREPARE, click Model
Settings in Configuration and Simulation. Enter 2*t_s*(taps-1) for the Stop time parameter.

To run the simulation, click Run in the model window.

This window appears automatically when you start the simulation. The following plot shows the
baseband-equivalent model, which contains a significant amount of acausal energy because of the
limited bandwidth of the model.

Baseband-Equivalent Model

The next part of the example shows you how to reduce this acausal response.

Reducing Acausal Response in the Baseband-Equivalent Model

In this part of the example, you adjust the Fractional bandwidth of guard bands parameter. This
parameter controls the shaping of the filter that the blockset applies to create the baseband-
equivalent model.

1 Set the Input Port Fractional bandwidth of guard bands parameter to 0.2.
2 Rerun the simulation.

 Create Complex Baseband-Equivalent Model

A-19

You can see that the acausal response is lower than it was for the previous simulation, but there is
still some energy wrapping around the end of the model because it is periodic.

Baseband-Equivalent Model with Filter Shaping

Note You can further reduce the acausal response in the baseband-equivalent model by increasing
the value of the Fractional bandwidth of guard bands parameter above 0.2, but if you use a high
value, you compromise the fidelity of the gain of the transmission line.

The next section shows you how to shift the response to avoid this wrapping.

Introduce Delay into the Baseband-Equivalent Model

In this part of the example, you adjust the Modeling delay (samples) parameter. This parameter
controls the delay the blockset applies to create the baseband-equivalent model.

1 Set the Input Port Modeling delay (samples) parameter to 12.
2 Rerun the simulation.

The response of the baseband-equivalent model is concentrated in a small time window. This model
provides the most accurate time-domain simulation of the specified band of frequency data.

A Create Complex Baseband-Equivalent Model

A-20

Baseband-Equivalent Model with Filter Shaping and Delay

See Also
RLCG Transmission Line | Input Port | Output Port

More About
• “Model Nonlinearity” on page 5-14
• “Convert to and from Simulink Signals” on page A-22

 Create Complex Baseband-Equivalent Model

A-21

Convert to and from Simulink Signals

Signal Conversion Specifications
When you simulate an RF model, the blockset must convert the mathematical Simulink signals to and
from the physical modeling environment. The following figure shows the signals involved in the
conversion.

Where:

• ZS is the Source impedance (ohms) parameter of the Input Port block.
• ZL is the Load impedance (ohms) parameter of the Output Port block.

There are two options for interpreting the Simulink signal that enters the Input Port block:

• Sin is the incident power wave. For more information about this option, see “Interpret Simulink
Signals as Incident Power Waves” on page A-22.

• Sin is the source voltage. For more information about this option, see “Interpret Simulink Signals
as Source Voltages” on page A-24.

Interpret Simulink Signals as Incident Power Waves
The blockset provides the option to interpret the input Simulink signal, Sin, as the incident power
wave, ap1, at the first port of the RF system. The following figure shows the model for this
interpretation.

A Convert to and from Simulink Signals

A-22

In the figure, bp2 is the transmitted power wave at the second port of the RF system. This is the signal
at the output of the Output Port block, Sout.

For a 2-port RF system, the incident and transmitted power waves are defined as:

ap1 =
VS

2 RS

bp2 =
RL
ZL

VL

where:

• ZS, the Source impedance (ohms) parameter of the Input Port block, is defined as:

ZS = RS + jXS

• ZL, the Load impedance (ohms) parameter of the Output Port block, is defined as:

ZL = RL + jXL

Solving the power wave equations for Sin and Sout gives the following relationships:

Sin =
VS

2 RS

Sout =
RL
ZL

VL

The implications of this interpretation are:

 Convert to and from Simulink Signals

A-23

• Sin
2 is equal to the power available from the source, Pavs.

• Sout
2 is equal to the power delivered to the load, Pout.

For a linear RF system, Pout = GtPavs where Gt is the transducer power gain. As a result, the Simulink
signals at the input and output of the RF system have the following relationship:

Sout
2 = Gt Sin

2

Note You can plot Gt from the Output Port block's Visualization tab.

Interpret Simulink Signals as Source Voltages
The blockset provides the option to interpret the input Simulink signal, Sin, as the source voltage, VS,
of the RF system. The following figure shows the model for this interpretation.

With this interpretation, the signal at the output of the Output Port block is the load voltage, VL.

The blockset interpretation of the input Simulink signal as the source voltage, VS, produces different
results than the interpretation where the input Simulink signal is the incident power wave. When the
source and load impedances are the same and real, the former interpretation produces 6 dB of loss
compared to the latter.

Specify Input Signal Conversions
To specify the way in which the blockset interprets the input Simulink signal, you change the value of
the Treat input Simulink signal as parameter in the Input Port dialog box. The available parameter
values are:

A Convert to and from Simulink Signals

A-24

• Incident power wave — Interpret the input signal as the incident power wave.
• Source voltage — Interpret the input signal as the source voltage.

See Also
General Amplifier | Input Port | Output Port | S-Parameters Amplifier

More About
• “Model RF Components” on page 5-2

 Convert to and from Simulink Signals

A-25

Model Mixers

B

2-Port Mixer Blocks
Typically, the block diagram of a mixer has three ports, as shown in the following representation of a
downconversion mixer.

The mathematical and physical mixer blocks model both a mixer and a local oscillator, so they have
only two ports.

The following figure shows the icons of the mixer blocks. The icons of all the mixer blocks show the
internal local oscillator.

For the physical blocks, you can use the LO frequency (Hz) parameter to specify the local
oscillator's frequency.

B 2-Port Mixer Blocks

B-2

For more information, see the individual block reference pages.

 2-Port Mixer Blocks

B-3

Model a Mixer Chain
RF Blockset Equivalent Baseband software uses a baseband equivalent model to simulate RF
components in the time domain. The blockset only models a band of frequencies around the carrier
frequency of each component; the frequency band is determined by the following parameters of the
corresponding Input Port block:

• Reciprocal of the Sample time (s)
• Center frequency (Hz)

When a mixer is present in a physical subsystem, it shifts the carrier frequency of the signal. This
shift affects the frequencies that are used to create baseband equivalent model.

To illustrate how the mixer works, consider a typical RF mixer chain that consists of the following
components:

• Direct Quadrature Upconverter
• High-Power Amplifier
• Channel
• Low-Noise Amplifier
• Downconverting Mixer
• IF Filter
• Direct Quadrature Downconverter

The following diagram shows these components and the band of frequencies that are simulated for
each component. The signals at the input and output of the cascade are baseband complex. For the
cascade, the diagram shows the real passband frequencies that are used to create the baseband-
equivalent model, which is centered at zero. For a detailed explanation of how to use the blockset to
model quadrature mixers, see “Quadrature Mixers” on page B-6.

B Model a Mixer Chain

B-4

See Also
General Mixer

More About
• “Model RF Mixer”

 Model a Mixer Chain

B-5

Quadrature Mixers

In this section...
“Use RF Blockset Equivalent Baseband Software to Model Quadrature Mixers” on page B-6
“Model Upconversion I/Q Mixers” on page B-6
“Model Downconversion I/Q Mixers” on page B-7
“Simulate I/Q Mixers” on page B-7

Use RF Blockset Equivalent Baseband Software to Model Quadrature
Mixers
RF Blockset software lets you model upconversion and downconversion quadrature mixers using
Physical blocks. These mixers convert a complex baseband signal up to and down from the desired
carrier frequency by mixing the real and imaginary parts of the signal with a cosine and sine of the
same frequency.

Model Upconversion I/Q Mixers
You use the Input Port block to model the upconversion of in-phase/quadrature baseband signals to
modulated signals at a finite real carrier frequency. The real component of the block input represents
the in-phase signal. The imaginary component of the block input represents the quadrature signal.

To model a perfect quadrature upconversion mixer, use the Input Port block with the Center
frequency (Hz) parameter set to the carrier frequency.

To model an imperfect quadrature upconversion mixer, use the Input Port block with the Center
frequency (Hz) parameter set to the carrier frequency. Follow this block immediately by a mixer
block with the LO frequency (Hz) parameter set to 0. Specify imperfections as follows:

• S-parameters — Use S-parameters to specify imperfections such as frequency response. For a
mixer, S21 describes the conversion gain, as explained in the Network Parameters section of the
reference page for each mixer block. Use purely real and purely imaginary S21 parameters to
represent multiplying the input signal by a pure cosine and a pure sine, respectively. Use a
complex S21 parameter to represent multiplying the input signal by a combination of sine and
cosine.

• Thermal noise — Use thermal noise to specify temperature-dependent random noise.
• Phase noise — Use the phase noise to specify noise to add to the angle component of the input

signal.
• Nonlinearity — Use nonlinearity (specified as output power and phase as a function of input power

and frequency in an AMP file or as third-order intercept point) to specify nonlinear mixer behavior
as a function of input power.

Note If you specify a nonzero value for the local oscillator frequency of the mixer and set the Type
parameter to Upconverter, the blockset converts the signal to a frequency above the center
frequency. The final IF value is the sum of the Input Port center frequency and the mixer local
oscillator frequency.

B Quadrature Mixers

B-6

Model Downconversion I/Q Mixers
You use the Output Port block to model the downconversion of in-phase/quadrature modulated carrier
signals to baseband signals. The real component of the block output represents the in-phase signal.
The imaginary component of the block output represents the quadrature signal.

The finite real carrier frequency is set automatically as the sum of the center frequency of the Input
Port block and the LO frequencies in any mixer blocks in the cascade.

Note In the cascade, upconversion mixers increase the carrier frequency and downconversion
mixers decrease the carrier frequency.

The Output Port block models a perfect quadrature downconversion mixer. To model an imperfect
quadrature downconversion mixer, precede the Output Port block immediately by a mixer block with
the LO frequency (Hz) parameter set to 0. Specify imperfections as follows:

• S-parameters — Use S-parameters to specify imperfections such as frequency response. For a
mixer, S21 describes the conversion gain, as explained in the Network Parameters section of the
reference page for each mixer block. Use purely real and purely imaginary S21 parameters to
represent multiplying the input signal by a pure cosine and a pure sine, respectively. Use a
complex S21 parameter to represent multiplying the input signal by a combination of sine and
cosine.

• Thermal noise — Use thermal noise to specify temperature-dependent random noise.
• Phase noise — Use the phase noise to specify noise to add to the angle component of the input

signal.
• Nonlinearity — Use nonlinearity (specified as output power and phase as a function of input power

and frequency in an AMP file or as third-order intercept point) to specify nonlinear mixer behavior
as a function of input power.

Note The mixer output frequency must be positive. This means that if you choose a downconverting
mixer, the input carrier frequency fin must be greater than the local oscillator frequency flo.
Otherwise, an error appears.

Simulate I/Q Mixers
When you model an I/Q mixer in the blockset, the center frequency you specify in the Input Port block
dialog is only used to build a complex-baseband equivalent model of the cascade that represents the
mixer. The blockset simulates this model using a fixed time step equal to the sample time that you
specify in the Input Port block dialog box.

To examine the model in the Simulink window:

1 Click Modeling > Compile Diagram > Update Model to update the model diagram.
2 Right-click the Output Port block and select Mask > Look Under Mask.

For more information on baseband-equivalent modeling, see “Model RF Components” on page 5-2.

See Also
General Mixer

 Quadrature Mixers

B-7

More About
• “Model a Mixer Chain” on page B-4
• “Model RF Components” on page 5-2
• “Model RF Mixer”

B Quadrature Mixers

B-8

Examples

• “Vary Phase Of Signal During Simulation” on page 7-2
• “Vary Attenuation of Signal During Simulation” on page 7-4
• “Explicitly Simulate Resistor Thermal Noise” on page 7-5
• “Attenuate Signal Power” on page 7-6
• “Demodulate Two-Tone RF Signal Using IQ Demodulator” on page 7-7
• “Modulate Two-Tone DC Signal Using IQ Modulator” on page 7-12
• “Spot Noise Data in Amplifiers and Effects on Measured Noise Figure” on page 7-16
• “Measure Transducer Gain of Device Under Test” on page 7-20
• “Measure Noise Figure of Device Under Test” on page 7-22
• “Measure IIP2 of Device Under Test” on page 7-25
• “Measure IIP3 of Device Under Test” on page 7-27
• “Measure OIP2 of Device Under Test” on page 7-30
• “Measure OIP3 of Device Under Test” on page 7-32
• “Single Pole Triple Throw Switch” on page 7-35
• “Frequency Response of Lowpass Chebyshev Filter” on page 7-38
• “Model LO Phase Noise” on page 7-42
• “Carrier to Interference Performance of Weaver Receiver” on page 7-48
• “Modulate Two-Tone DC Signal Using IQ Modulator” on page 7-55
• “Measurement of Gain and Noise Figure Spectrum” on page 7-59
• “Idealized Baseband Amplifier with Nonlinearity and Noise” on page 7-72
• “Use Ladder Filter Block to Filter Gaussian Noise” on page 7-74
• “Measure S-Parameter Data of Chebyshev Filter” on page 7-77
• “Measure S-Parameter of Nonlinear System” on page 7-81
• “Simulation of RF Systems with Antenna Blocks” on page 7-87
• “Power Amplifier Characterization” on page 7-92
• “Modulate Quadrature Baseband Signals Using IQ Modulators” on page 7-104
• “Intermodulation Analysis of Mathematical Amplifier” on page 7-107
• “Create Virtual Connections Using Connection Label Block” on page 7-109
• “Model Wilkinson Power Divider” on page 7-110
• “Modulate Input Signal Onto Square Carrier Wave” on page 7-115
• “Time-Domain Filtering of RF Complex Baseband Signals in Simulink” on page 7-122
• “Model RF Complex Baseband S-Parameters in Simulink” on page 7-125

7

Vary Phase Of Signal During Simulation

Use the Variable Phase Shift block to shift the phase of a sine wave to 180 degrees.Use Repeating
Sequence Stair block as a Simulink control signal to control the phase of the signal. To see the
variation in phase to 180 degrees, first open and run the model. During simulation, change the value
of the Simulink control signal to 90 degrees and see a change in phase in the Output Scope.

7 Examples

7-2

 Vary Phase Of Signal During Simulation

7-3

Vary Attenuation of Signal During Simulation

Use the Variable Attenuator block to attenuate a 20 dB constant signal. Use the Repeating Sequence
Stair block as a Simulink control signal to vary the attenuation of the signal. In this model, the signal
attenuation varies between 5 and 10 dB during simulation. To see the variation in attenuation, open
and run the model.

7 Examples

7-4

Explicitly Simulate Resistor Thermal Noise

Use the Noise block to calculate the classic thermal noise floor, kT, for a matched resistor circuit.
Model configuration is as follows:

• Time step of the model is 1e-6 and frequency is 2 GHz.
• The Resistor noise source is modelled explicitly to make it noiseless. The resistance is 50 ohms. In

the Resistor blocks, Simulate Noise is not selected.
• The Noise current source is parallel to the Resistor block models the noise. In the Noise block, the

Source type is set to Ideal current to make it a current source. The Noise spectral density is
defined as 4kT/R in A^2/Hz. Where k is Boltzmann constant and T is temperature in kelvin.

• The masked block, Calculate Noise Power, calculates the noise floor as a standard deviation of the
output signal.

open_system('model_simrf_noise_source1')

To run the model, select Simulation > Run . With the bandwidth included using the Configuration
block, noise power is in the range of -173.98 to 174.1 dBm

See Also
Noise | S-Parameters | Configuration

Related Examples
• “Spot Noise Data in Amplifiers and Effects on Measured Noise Figure” on page 7-16

 Explicitly Simulate Resistor Thermal Noise

7-5

Attenuate Signal Power

Use the Attenuator block to attenuate a constant signal of 20 dB by 3 dB.

7 Examples

7-6

Demodulate Two-Tone RF Signal Using IQ Demodulator

Use the IQ Demodulator block to demodulate a two-tone RF signal to DC level. Observe the
impairments in the demodulated output signal such as images due to gain imbalance, intermodulation
distortion, and output third-order intercept (OIP3).

The two tones are at 10 MHz and 15 MHz. The power of each tone is -30 dBm. The carrier frequency
is 2 GHz.

IQ Demodulator

The IQ Demodulator parameters are:

• Available power gain: 10 dB
• Local oscillator frequency: 2 GHz
• I/Q gain mismatch: 0.1 dB
• LO to RF Isolation: 90 dB
• Noise Figure: 6 dBm/Hz

Open the model.

open('model_IQdemod')

Run the model and observe the spectrum analyzers.

 Demodulate Two-Tone RF Signal Using IQ Demodulator

7-7

Input Spectrum Analyzer

In the input spectrum analyzer, you see the input RF signal with the two tones at 10 MHz and 15
MHz. The power level of each tone is -30 dBm. The carrier frequency is 2 GHz.

7 Examples

7-8

I/Q Spectrum Analyzer

In the I/Q spectrum analyzer, you see the inphase part of the demodulated signal including the DC
signal level and the two tones. The following formula gives you the DC power level of the signal:

The output power level of the two tones are -20 dBm. You also see the OIP3 value (measured by the
spectrum analyzer) at approximately 20 dBm.

 Demodulate Two-Tone RF Signal Using IQ Demodulator

7-9

Complex Output Spectrum Analyzer

In the complex output spectrum analyzer, you see the whole demodulated signal including the
imaginary parts. The output power level of the two tones (10 MHz and 15 MHz) is -17 dBm.

Image Rejection Ratio

The images of the two tones are at -10 MHz and -15 MHz. The output power level of the images are
-61.78 dBm. Image rejection ratio is given by the formula:

See Also

IQ Demodulator | Configuration | Inport | Outport

7 Examples

7-10

Related Topics

“Modulate Two-Tone DC Signal Using IQ Modulator” on page 7-55

 Demodulate Two-Tone RF Signal Using IQ Demodulator

7-11

Modulate Two-Tone DC Signal Using IQ Modulator

Use the IQ Modulator block to Modulate a two-tone signal to RF level. Observe the impairments in
the modulated output signal such as images due to gain imbalance, intermodulation distortion, and
output third-order intercept (OIP3).

The two-tones are at 10 MHz and 15 MHz.The power of each tone is -30 dBm. The carrier frequency
is 0 GHz.

IQ Modulator

The IQ modulator parameters are :

• Available power gain: 10 dB
• Local oscillator frequency: 2 GHz
• I/Q gain mismatch: 0.1 dB
• LO to RF Isolation: 90 dB
• Noise Floor: -160 dBm/Hz
• IP3: 10 dBm

Open the model.

open('model_IQmod')

Run the model and observe the spectrum analyzers.

7 Examples

7-12

Complex Output Power Density

In the complex output power density spectrum analyzer, you see the noise floor of the signal at -160
dBm/Hz.

 Modulate Two-Tone DC Signal Using IQ Modulator

7-13

Complex Output Spectrum Analyzer

In the complex output spectrum analyzer, you see the whole modulated signal including the imaginary
parts. The output power level of the two tones (10 MHz and 15 MHz) is -20 dBm.

The output third-order intercept(OIP3) is at 10 dBm. The spectrum analyzer measures this value.

Image Rejection Ratio

The images of the two-tones are at -10 MHz and -15 MHz. The output power level of the two images
are -67.8 dBm. Image rejection ratio is calculated using:

where,

The image power level is calculated using this:

7 Examples

7-14

See Also

IQ Modulator

Related Topics

“Demodulate Two-Tone RF Signal Using IQ Demodulator” on page 7-7

 Modulate Two-Tone DC Signal Using IQ Modulator

7-15

Spot Noise Data in Amplifiers and Effects on Measured Noise
Figure

This example shows a test bench model to describe the noise introduced by a 2-port device.

The spot noise data parameters, Fmin, opt, and Rn, fully describe the noise introduced by a 2-port
device. These parameters along with the source impedance, Zs uniquely determine the measured
noise figure of the device. You can use noise circles plotted on a Smith chart to show interaction
between Zs and the noise figure.

Measure Noise Figure in RF Blockset

The model Noise_figure_ex simulates a simple noise figure measurement. In this model, the
device under test comprises of a single amplifier. To open the model,

open_system('Noise_figure_ex.slx')

Click on the Open Script button before running the model. To run the model, select Simulation >
Run.

7 Examples

7-16

You see that the displayed value settles down at 10.0 dB of the measured noise figure. In this
testbench, the amplifier parameters represent a simple attenuator of 10 dB matched to 25 Ohms at
both input and output. Due to thermal equilibrium, the expected noise figure of the attenuator is 10
dB when matched, corresponding to the measured value. To gain a broader view of the expected
noise figure values for the amplifier when the source impedance deviates from the matched value of
25 Ohm, double-click the Expected Noise Circles subsystem placed in the vicinity of the
amplifier:

Click Plot noise circles to bring up a figure showing a Smith chart with circles corresponding
to the noise figure values specified above the button:

 Spot Noise Data in Amplifiers and Effects on Measured Noise Figure

7-17

The values shown in the Smith chart represent the expected noise figures obtained theoretically from
the parameters specified in the amplifier [1]. The Smith chart is interactive and you can place the
data cursor on any circle to view the corresponding noise figure, source impedance (normalized to
the reference impedance of the amplifier, Z0), and other RF properties. The initial data cursor
position corresponds to a point on a noise circle that is closest to the source impedance specified. To
control the complex value of this source impedance, double-click the Specify Source Impedance
subsystem, and specify the desired value in the edit box.

To validate that the simulated measured noise figure corresponds to theoretical values, specify a
reference impedance from the Smith chart, using the Specify Source Impedance subsystem. Run
the model again.

Measuring Other RF Systems

You can replace the amplifier in the model by any other RF Blockset system and measure its noise
figure. In case the system is frequency depended, you can change the frequency for the

7 Examples

7-18

measurements by double-clicking the Specify Frequency subsystem and specifying the desired
frequency. This frequency is also used for the amplifier noise circles plot.

The plotted expected noise circles apply to the Amplifier block alone. The plotted circles capture
correctly all types of data inputs specified in the amplifier, including s2p based network and noise
data. Note that the Available Gain shown in the data window of the Smith chart is based on the
original data and ignores inaccuracies introduced by the amplifier modeling method. The plotting
fails if a block named Amplifier does not exist in the model.

Using Other RF Blockset Blocks

Three additional ways to implement the attenuator specified in the amplifier are:

1 Use an RF Blockset Attenuator block with attenuation of 10dB, with input and output
impedances set to 25 Ohms.

2 Implement the attenuator using three resistors arranged in a T or topology.
3 Use an S-parameter block with the same Scattering matrix used in the amplifier. Select

Simulate noise in the block. Simulating noise in a passive S-parameter block accounts for the
resistive noise introduced by the S-parameters.

See Also
Noise | Noise Figure Testbench | S-Parameters | Attenuator

More About
• “RF Noise Modeling” on page 8-184

 Spot Noise Data in Amplifiers and Effects on Measured Noise Figure

7-19

Measure Transducer Gain of Device Under Test

Use the Transducer Gain Testbench block to verify the gain of a device under test (DUT).

Connect the blocks as shown in the model.

Set the parameters for DUT and the testbench.

Amplifier block:

• Available power gain — 10 dB

Mixer block:

• Available power gain — 5 dB
• Local oscillator frequency — 1.9 GHz

Transducer Gain Testbench:

• Input frequency (Hz) — 0.1e9
• Output frequency (Hz) — 2.0e9

Run the model. You will see that the display shows a transducer gain value of 15 dB. This can be
calculated using the equation, Transducer gain of the DUT = Available power gain of Amplifier +
Available power gain of Mixer = 10 dB + 5 dB = 15 dB.

7 Examples

7-20

See Also
Transducer Gain Testbench | Noise Figure Testbench

Related Examples
• “Measure Noise Figure of Device Under Test” on page 7-22

 Measure Transducer Gain of Device Under Test

7-21

Measure Noise Figure of Device Under Test

Use the Noise Figure Testbench block to measure the noise figure of a device under test (DUT).

Connect the blocks as shown in the model.

Set the parameters for DUT and the testbench.

Amplifier block:

• Available power gain — 10 dB
• Noise type — Noise figure
• Noise figure (dB) — 4 dB

Mixer block:

• Available power gain — 5 dB
• Local oscillator frequency — 2.0 GHz
• Add Image Reject filter — on
• Noise figure (dB) — 8 dB
• Filter type — Highpass
• Implementation — Constant per carrier
• Passband edge frequency — 2.05 GHz

Noise Figure Testbench block:

• Input frequency (Hz) — 2.1e9
• Output frequency (Hz) — 0.1e9

Run the model. You will see that the display shows a OIP3 value of 4.817 dB. This value can be
verified analytically using the noise figure (NF) equation provided in [1].

NF_DUT = 10*log10(F_tot) = 10*log10(F_1 + (F_2 – 1)/ A_1)

7 Examples

7-22

= 10*log10((10^(4/10)) + (10^(8/10) – 1)/10^(10/10)) = 4.8328 dB

where,

Noise factor of amplifier, F_1 = 10^((4)/10)

Noise factor of mixer, F_2 = 10^((8)/10)

Gain of amplifier, A_1 = 10^(10/10)

 Measure Noise Figure of Device Under Test

7-23

References
[1] Razavi, B.. “RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and

Emerging Technologies Series).” (2011).

See Also
Transducer Gain Testbench | Noise Figure Testbench

Related Examples
• “Measure Transducer Gain of Device Under Test” on page 7-20

7 Examples

7-24

Measure IIP2 of Device Under Test

Use the IIP2 Testbench block to verify the input second-order intercept (IIP2) of a device under test
(DUT).

Connect the blocks as shown in the model.

Set the parameters for DUT and the testbench.

Amplifier block:

• Available power gain — 10 dB
• Intercept points convention — Input

Mixer block:

• Available power gain — 5 dB
• Local oscillator frequency — 2.0 GHz
• Add Image Reject filter — on
• Intercept points convention — Input
• IP2 — 32 dBm
• Filter type — Highpass
• Implementation — Constant per carrier
• Passband edge frequency — 2.05 GHz

IIP2 Testbench block:

• Input frequency (Hz) — 2.1e9
• Output frequency (Hz) — 0.1e9
• Simulate noise (both stimulus and DUT internal) — off

Run the model. Since the mixer is preceded by a 10 dB amplifier you will see that the display shows
an IIP2 value of 22 dBm. This is calculated using the rquation, IIP2_DUT = IIP2 of mixer – available
power gain of amplifier = 22 dBm.

 Measure IIP2 of Device Under Test

7-25

See Also
OIP2 Testbench | OIP3 Testbench | IIP3 Testbench | IIP2 Testbench

Related Examples
• “Measure IIP3 of Device Under Test” on page 7-27

7 Examples

7-26

Measure IIP3 of Device Under Test

Use the IIP3 Testbench block to measure the input third-order intercept (IIP3) of device under test
(DUT).

Connect the blocks as shown in the model.

Set the parameters for DUT and the testbench.

Amplifier block:

• Available power gain — 10 dB
• Intercept points convention — Input
• IP3 — 32 dBm

Mixer block:

• Available power gain — 5 dB
• Local oscillator frequency — 2.0 GHz
• Add Image Reject filter — on
• Intercept points convention — Input
• IP3 — 35 dBm
• Filter type — Highpass
• Implementation — Constant per carrier
• Passband edge frequency — 2.0 GHz

IIP3 Testbench block:

• Input frequency (Hz) — 2.1e9
• Output frequency (Hz) — 0.1e9
• Simulate noise (both stimulus and DUT internal) — off

Run the model. You will see that the display shows an IIP3 value of 24.19 dBm. This value can be
verified analytically using the equation provided in [1].

 Measure IIP3 of Device Under Test

7-27

IIP3 of the DUT = – 10*log10(1/10^((32)/10) + 10^(10/10)/10^((35)/10)) = 24.2099 dBm

where,

IIP3 of the amplifier in linear scale = 10^((32)/10)

IIP3 of the mixer in linear scale = 10^((35)/10)

Available power gain of the amplifier = 10^(10/10)

7 Examples

7-28

References
[1] Razavi, Behzad. “Basic Concepts “ in RF Microelectronics, 2nd edition, Prentice Hall, 2012.

See Also
OIP2 Testbench | OIP3 Testbench | IIP3 Testbench | IIP2 Testbench

Related Examples
• “Measure OIP3 of Device Under Test” on page 7-32

 Measure IIP3 of Device Under Test

7-29

Measure OIP2 of Device Under Test

Use the OIP2 Testbench block to verify the output second-order intercept (OIP2) of a device under
test (DUT).

Connect the blocks as shown in the model.

Set the parameters for DUT and the testbench.

Amplifier block:

• Available power gain — 10 dB
• Intercept points convention — Input

Mixer block:

• Available power gain — 5 dB
• Local oscillator frequency — 2.0 GHz
• Add Image Reject filter — on
• Intercept points convention — Output
• IP2 — 32 dBm
• Filter type — Highpass
• Implementation — Constant per carrier
• Passband edge frequency — 2.05 GHz

OIP2 Testbench block:

• Input frequency (Hz) — 2.1e9
• Output frequency (Hz) — 0.1e9
• Simulate noise (both stimulus and DUT internal) — off

Run the model. You will see that the display shows an OIP2 value of 32 dBm since the OIP2 was
specified only in the Mixer block.

7 Examples

7-30

See Also
OIP2 Testbench | OIP3 Testbench | IIP3 Testbench | IIP2 Testbench

Related Examples
• “Measure OIP3 of Device Under Test” on page 7-32

 Measure OIP2 of Device Under Test

7-31

Measure OIP3 of Device Under Test

Use the OIP3 Testbench block to measure the output third order intercept (OIP3) of a device under
test (DUT).

Connect the blocks as shown in the model.

Set the parameters for DUT and the testbench.

Amplifier block:

• Available power gain — 10 dB
• Intercept points convention – Output
• IP3 – 32 dBm

Mixer block:

• Available power gain — 5 dB
• Local oscillator frequency — 2.0 GHz
• Add Image Reject filter — on
• Intercept points convention — Output
• IP3 — 35 dBm
• Filter type — Highpass
• Implementation — Constant per carrier
• Passband edge frequency — 2.05 GHz

OIP3 Testbench block:

• Input frequency (Hz) — 2.1e9
• Output frequency (Hz) — 0.1e9
• Simulate noise (both stimulus and DUT internal) — off

Run the model. You will see that the Display block shows an OIP3 value of 32.87 dBm. This value can
be verified analytically using the IIP3 equation provided in [1].

7 Examples

7-32

OIP3 of the DUT = IIP3 + Gain = – 10*log10(1/10^((22)/10) + 10^(10/10)/10^((30)/10)) + 15 =
32.8756 dBm

where,

IIP3 of the amplifier in linear scale =10^((32-10)/10), as IIP3 = OIP3 – Gain ; IIP3 = 32 dBm – 10 dB
= 22 dBm

IIP3 of the mixer in linear scale = 10^((35-5)/10), as IIP3 = OIP3 – Gain ; IIP3 = 35 dBm – 5 dB = 30
dBm

Available power gain of the amplifier = 10^(10/10)

 Measure OIP3 of Device Under Test

7-33

References
[1] Razavi, Behzad. “Basic Concepts “ in RF Microelectronics, 2nd edition, Prentice Hall, 2012.

See Also
OIP2 Testbench | OIP3 Testbench | IIP3 Testbench | IIP2 Testbench

Related Examples
• “Measure IIP3 of Device Under Test” on page 7-27

7 Examples

7-34

Single Pole Triple Throw Switch

Use the SPnT block to create a single pole triple throw switch to switch a signal between three
outputs.

Open the model.

The model consists of:

• Sine Wave block to generate a sine wave of amplitude 1.
• Power Meter block to determine the power of the sine wave. This is the input power. The input

power is 30 dB.
• Inport and Configuration blocks connected to the "In" port of the SPnT block.
• A Constant block connected to the "Ctl" port of the SPnT block. This signal is used to control the

switch outputs.
• SPnT switch block with 3 output ports.
• Outport 1, Outport 2, Outport 3, and Power meter blocks to calculate the power of each output

signal.
• Display block to display the three outputs.

Run the model.

 Single Pole Triple Throw Switch

7-35

The Display block shows that the signal power is available through the first port of the switch as the
"Ctl" port is set to 1.

Open the SPnT block to see set values. Currently the switch is set to Absorptive using the Load
Type parameter.

Change the Load Type value to Reflective .

Change the value of the Constant block to 3 .

7 Examples

7-36

Run the model again.

The Display block shows that the signal power is available through the third port of the switch as the
"Ctl" port is set to 3 .

See Also

Inport | Outport | SPnT

 Single Pole Triple Throw Switch

7-37

Frequency Response of Lowpass Chebyshev Filter

Use the Filter block to study the frequency response of a lowpass Chebyshev filter.

From the MATLAB command prompt, open the model.

open_system('ex_simrf_filter_lowpass_cheby_resp')

The Constant block sets the amplitude of the 201 carrier signals to ones (1, 201). The Inport block
generates the 201 carrier frequencies for the mask value of logspace (7, 9, 201). Generate an 11th
order lowpass LC Pi Chebyshev filter by setting appropriate block parameters in the Filter block.

7 Examples

7-38

The output signal from the Filter block is fed into the Outport block. The Outport block is
configured to give both magnitude and angle of the signal. The angle output is terminated using the
Terminator block. The magnitude output is squared and converted to dB using Math Function
and dB Conversion blocks.

To run the model, select Simulation > Run. You can also use the following command:

sim('ex_simrf_filter_lowpass_cheby_resp')

The model creates an Out array in the MATLAB workspace. Since the simulation stop time is set to 0,
the frequency response corresponds to the steady state solution.

To plot the frequency response, use the following commands in the MATLAB command window.

 figure
 freq = logspace(7,9,201);
 h = semilogx(freq, Out, '-gs', 'LineWidth',1, 'MarkerSize',3, 'MarkerFaceColor','r');
 xlabel('Frequency [Hz]');
 ylabel('Amplitude [dB]');
 title('Frequency Response of Lowpass Chebyshev Filter');

 Frequency Response of Lowpass Chebyshev Filter

7-39

You can also use the Plot button in the Visualization tab of the Filter block parameters. Set the
Frequency points to logspace (7, 9, 201) and X-axis scale to Logarithmic to achieve a similar plot.

7 Examples

7-40

See Also

Filter | Inport | Outport | Configuration

Related Topics

“Model RF Filter Using Circuit Envelope”

 Frequency Response of Lowpass Chebyshev Filter

7-41

Model LO Phase Noise

This example shows how to model and visualize LO phase noise. A mixer transfers local oscillator
(LO) phase noise directly to its output.

The preceding figure shows the transfer of phase noise from to .

Create Model with Phase Noise

The model ex_simrf_phase_noise introduces phase noise into the model from the example,
“Carrier to Interference Performance of Weaver Receiver” on page 7-48. The first mixing stage
downconverts the RF and image to . To open the model:

open_system('ex_simrf_phase_noise')

7 Examples

7-42

View Simulation Output

The model uses Spectrum Analyzer to generate 5 plots.

The Phase Noise spectrum scope shows a single-sided power density spectrum measuring the phase
noise level at the LO1 source versus frequency offset shown in logarithmic scale.

The IF1 spectrum scope shows a power spectrum centered at the first intermediate frequency,
measured between the first and second stages.

 Model LO Phase Noise

7-43

The scope shows that the LO phase noise has been transferred to the image. The RF signal on the
carrier is not visible in the figure because its power level is below the phase noise power of the
downconverted image signal.

The Output spectrum scope shows the downconverted RF with the images removed.

7 Examples

7-44

The LO phase noise has been transferred to the receiver output.

Shaping LO Noise Skirt

As seen in the phase noise scope, the added phase noise is pink (1/f) and is specified within the CW
source LO1. Specifically, the Add phase noise checkbox is checked in the block parameters dialog:

 Model LO Phase Noise

7-45

The phase noise frequency offset, PhNoOffsets , and phase noise level, PhNoLevels , variables are
defined in the models PreLoadFcn callback, accessible through SETUP > Model Settings > Model
Properties :

7 Examples

7-46

The upper limit of the offset frequency is governed by the sample time and is limited to the envelope
bandwidth of the simulation. The lower limit of the offset frequency is governed by the duration of the
impulse response generating the phase noise frequency profile. Increasing the duration length in
time steps from 128 to 256 will double the frequency resolution and allow simulation of the 1/f profile
down to 250Hz (as opposed to the current lower limit of 500 Hz).

See Also

Noise Figure Testbench | Mixer

Related Topics

“RF Noise Modeling” on page 8-184

 Model LO Phase Noise

7-47

Carrier to Interference Performance of Weaver Receiver

A classic superheterodyne architecture filters images prior to frequency conversion. In contrast,
image-reject receivers remove the images at the output without filtering but are sensitive to phase
offsets.

The preceding figure illustrates two input signals at the carriers and that both differ from
the LO frequency, , by an amount . Mixing translates both input signals down to . Perfect
image rejection in the final stage of the receiver removes the image signal from the output entirely.

Create Model with RF Interference

The model ex_simrf_ir performs image rejection with a Weaver architecture. The receiver
downconverts the signals and to and in two sequential stages.

open_system('ex_simrf_ir')

7 Examples

7-48

Set Up RF Blockset Environment

To maximize performance, the Fundamental tones and Harmonic order parameters are explicitly
set in the Configuration block. To create the minimal set of simulation frequencies, the following
carrier frequencies are set or created within the model.

• , the RF carrier, equals 100 MHz.
• , the image of the RF carrier relative to , equals 200 MHz.
• , the frequency of the LO in the first mixing stage, equals 150 MHz.
• , the intermediate frequency of the signal after the first mixing stage equals:

 = 50 MHz.
• , the frequency of the LO second mixing stage equals 75 MHz.
• , the intermediate frequency of the signal after the second mixing stage equals: =

25 MHz.

In this system, every carrier is a multiple of . The largest carrier, , is the 8th harmonic of ,
so setting Fundamental tones to and the Harmonic order to 8 ensures that every carrier is in
the set of simulation frequencies.

Specify the solver conditions and noise settings in the Configuration block:

• The Solver type is set to auto. For more information on choosing solvers, see the reference page
for the Configuration block or see Choosing Simulink and Simscape Solvers.

• The Step size parameter is set to 1/(mod_freq*64). This setting ensures a simulation bandwidth
64 times greater than the envelope signals in the system.

• The Simulate noise box is checked, so the environment includes noise in the simulation.

View Simulation Output

The model uses Spectrum Analyzer to generate four plots.

The RF spectrum scope shows the power spectrum of the carrier signal , specified as
carriers.RF in the Carrier frequencies parameter of the Input Sensor Outport block.

 Carrier to Interference Performance of Weaver Receiver

7-49

The modulation of the RF carrier is a constant envelope generated by a Continuous Wave block
which generates a single peak centered at the carrier.

The Image Spectrum scope shows the power spectrum of the image. The signal is recovered from the
carrier , specified as carriers.IM in the Carrier frequencies parameter of the Input Sensor
Outport block.

7 Examples

7-50

The Image Sinusoidal Source block generates a two-tone signal centered at .

The IF1 spectrum scope plot shows a power spectrum centered at the first intermediate frequency,
measured between the first and second stages. The sensor outputs the modulation from the carrier

, specified as carriers.IF1 in the Carrier frequencies parameter.

 Carrier to Interference Performance of Weaver Receiver

7-51

The Output spectrum scope shows the complete effects of the RF system. The sensor outputs the
modulation from the carrier , specified as carriers.IF2 in the Carrier frequencies parameter.

7 Examples

7-52

Model RF and Blocker Sources

To model more robust input signals, you can use a RF Blockset Inport block to specify a circuit
envelope signal generated using blocks from other Simulink™ libraries. For example, see the featured
example Impact of an RF Receiver on Communication System Performance. This
example uses Communications System Toolbox™ to model a QPSK-modulated waveform of random
bits with RF Blockset Inport that brings the signal into the RF Blockset environment.

Simulating LO Phase Offset

The phase shifters have specified Phase shift parameters of 90. Deviation from this value results in a
phase offset and causes imperfect image rejection. The featured example Measuring Image

 Carrier to Interference Performance of Weaver Receiver

7-53

Rejection Ratio in Receivers analyzes the IRR of the Weaver and Hartley architectures
several times, calculating the image rejection ratio (IRR) for several different phase offsets.

See Also

Related Examples
• “Top-Down Design of an RF Receiver” on page 8-166
• “Architectural Design of a Low IF Receiver System” on page 8-178

7 Examples

7-54

Modulate Two-Tone DC Signal Using IQ Modulator

Use the IQ Modulator block to Modulate a two-tone signal to RF level. Observe the impairments in
the modulated output signal such as images due to gain imbalance, intermodulation distortion, and
output third-order intercept (OIP3).

The two-tones are at 10 MHz and 15 MHz.The power of each tone is -30 dBm. The carrier frequency
is 0 GHz.

IQ Modulator

The IQ modulator parameters are :

• Available power gain: 10 dB
• Local oscillator frequency: 2 GHz
• I/Q gain mismatch: 0.1 dB
• LO to RF Isolation: 90 dB
• Noise Floor: -160 dBm/Hz
• IP3: 10 dBm

Open the model.

open('model_IQmod')

Run the model and observe the spectrum analyzers.

 Modulate Two-Tone DC Signal Using IQ Modulator

7-55

Complex Output Power Density

In the complex output power density spectrum analyzer, you see the noise floor of the signal at -160
dBm/Hz.

7 Examples

7-56

Complex Output Spectrum Analyzer

In the complex output spectrum analyzer, you see the whole modulated signal including the imaginary
parts. The output power level of the two tones (10 MHz and 15 MHz) is -20 dBm.

The output third-order intercept(OIP3) is at 10 dBm. The spectrum analyzer measures this value.

Image Rejection Ratio

The images of the two-tones are at -10 MHz and -15 MHz. The output power level of the two images
are -67.8 dBm. Image rejection ratio is calculated using:

where,

The image power level is calculated using this:

 Modulate Two-Tone DC Signal Using IQ Modulator

7-57

See Also

IQ Modulator

Related Topics

“Demodulate Two-Tone RF Signal Using IQ Demodulator” on page 7-7

7 Examples

7-58

Measurement of Gain and Noise Figure Spectrum

This example shows how to use RF Blockset to measure the Gain and Noise Figure of an RF system
over a given spectral range.

The example requires DSP System Toolbox™.

Introduction

In this example, a method for measuring the frequency-dependent gain and noise figure of an RF
system is described. These spectral properties are measured for two RF systems; A single Low Noise
Amplifier and the same amplifier when matched. The model used for the measurement is shown
below:

model = 'GainNoiseMeasurementExample';
open_system(model);

The model has two measurement units, each connected to a different subsystem containing the DUT.
The upper measurement unit is connected to an unmatched LNA in the DUT subsystem with yellow
background:

open_system([model '/DUT Unmatched']);

 Measurement of Gain and Noise Figure Spectrum

7-59

The lower measurement unit is connected to a matched LNA in the DUT subsystem with blue
background:

open_system([model '/DUT Matched']);

Each measurement unit outputs two vector signals representing the spectrums of the Gain and Noise
Figure of the corresponding DUT and those are inputted into two Array Plot (DSP System Toolbox)
blocks that plot the above properties versus frequency, comparing the unmatched and matched DUT
systems. In the following sections, the matching network design process is described, the simulation
results are given and compared with these expected from LNA and matching network properties.
Finally, the procedure used within the measurement units to obtain the spectral Gain and Noise
results is explained.

Design of the matching network

The matching network used in the matched DUT subsystem comprises a single stage L-C network
that is designed following the same procedure as the one described in the RF Toolbox example
“Designing Matching Networks for Low Noise Amplifiers”. Since the LNA used here is different, the
design is described below

7 Examples

7-60

Initially, an rfckt.amplifier object is created to represent an Heterojunction Bipolar Transistor
based low noise amplifier that is specified in the file, 'RF_HBT_LNA.S2P'. Then, the circle method
of the rfckt.amplifier object is used to place the constant available gain and the constant noise
figure circles on a Smith chart, and select an appropriate source reflection coefficient, GammaS, that
provides a suitable compromise between gain and noise. The GammaS value chosen yields an
available gain of Ga=21dB, and a noise figure of NF=0.9dB at the center frequency fc=5.5GHz:

unmatched_amp = read(rfckt.amplifier, 'RF_HBT_LNA.S2P');
fc = 5.5e9; % Center frequency (Hz)
circle(unmatched_amp,fc,'Stab','In','Stab','Out','Ga',15:2:25, ...
 'NF',0.9:0.1:1.5);

% Choose GammaS and show it on smith chart:
hold on
GammaS = 0.411*exp(1j*106.7*pi/180);
plot(GammaS,'k.','MarkerSize',16)
text(real(GammaS)+0.05,imag(GammaS)-0.05,'\Gamma_{S}','FontSize', 12, ...
 'FontUnits','normalized')
hLegend = legend('Location','SouthEast');
hLegend.String = hLegend.String(1:end-1);
hold off

 Measurement of Gain and Noise Figure Spectrum

7-61

For the chosen GammaS, the following properties can be obtained:

% Normalized source impedance:
Zs = gamma2z(GammaS,1);

% Matching |GammaL| that is equal to the complex conjugate of
% |GammaOut| shown on the data tip:
GammaL = 0.595*exp(1j*135.0*pi/180);

% Normalized load impedance:
Zl = gamma2z(GammaL,1);

The input matching network consists of one shunt capacitor, Cin, and one series inductor, Lin. The
Smith chart is used to find the component values. To do this, the constant conductance circle that
crosses the center of the Smith chart and the constant resistance circle that crosses GammaS are
plotted and the intersection points (Point) is found:

[~, hsm] = circle(unmatched_amp,fc,'G',1,'R',real(Zs));
hsm.Type = 'YZ';

% Choose GammaA and show points of interest on smith chart:
hold on
plot(GammaS,'k.','MarkerSize',16)
text(real(GammaS)+0.05,imag(GammaS)-0.05,'\Gamma_{S}','FontSize', 12, ...
 'FontUnits','normalized')
plot(0,0,'k.','MarkerSize',16)
GammaA = 0.384*exp(1j*(-112.6)*pi/180);
plot(GammaA,'k.','MarkerSize',16)
text(real(GammaA)+0.05,imag(GammaA)-0.05,'\Gamma_{A}','FontSize', 12, ...
 'FontUnits','normalized')
hLegend = legend('Location','SouthEast');
hLegend.String = hLegend.String(1:end-3);
hold off

7 Examples

7-62

Using the chosen GammaA, the input matching network components, Cin and Lin, are obtained:

% Obtain admittance Ya corresponding to GammaA:
Za = gamma2z(GammaA,1);
Ya = 1/Za;

% Using Ya, find Cin and Lin:
Cin = imag(Ya)/50/2/pi/fc
Lin = (imag(Zs) - imag(Za))*50/2/pi/fc

Cin =

 4.8145e-13

Lin =

 1.5218e-09

 Measurement of Gain and Noise Figure Spectrum

7-63

In a similar manner, the output matching network components are obtained using the intersection
points (Point) between a constant conductance circle that crosses the center of the Smith chart
and the constant resistance circle that crosses GammaL:

[hLine, hsm] = circle(unmatched_amp,fc,'G',1,'R',real(Zl));
hsm.Type = 'YZ';

% Choose GammaB and show points of interest on smith chart:
hold on
plot(GammaL,'k.','MarkerSize',16)
text(real(GammaL)+0.05,imag(GammaL)-0.05,'\Gamma_{L}','FontSize', 12, ...
 'FontUnits','normalized')
plot(0,0,'k.','MarkerSize',16)
GammaB = 0.612*exp(1j*(-127.8)*pi/180);
plot(GammaB,'k.','MarkerSize',16)
text(real(GammaB)+0.05,imag(GammaB)-0.05,'\Gamma_{B}','FontSize', 12, ...
 'FontUnits','normalized')
hLegend = legend('Location','SouthEast');
hLegend.String = hLegend.String(1:end-3);
hold off

7 Examples

7-64

Using the chosen GammaB, the input matching network components, Cout and Lout, are obtained:

% Obtain admittance Yb corresponding to GammaB:
Zb = gamma2z(GammaB, 1);
Yb = 1/Zb;

% Using Yb, find Cout and Lout:
Cout = imag(Yb)/50/2/pi/fc

Cout =

 8.9651e-13

Lout = (imag(Zl) - imag(Zb))*50/2/pi/fc

Lout =

 1.2131e-09

Simulation results for gain and noise figure spectrum measurement model

The above input and output network component values are used in the simulation of the matched
DUT in the gain and noise figure spectrum measurement model described earlier. The spectral results
displayed in the Array Plot blocks are given below:

open_system([model '/Gain Spectrum']);
open_system([model '/Noise Figure Spectrum']);
sim(model, 1e-4);

 Measurement of Gain and Noise Figure Spectrum

7-65

Next, the simulation results are compared with those expected analytically. To facilitate the
comparison, the unmatched and matched amplifier networks are analyzed using RF Toolbox. In
addition, as finer details are required, the simulation is run for a longer time. The results of the
longer simulation are given in the file 'GainNoiseResults.mat'.

% Analyze unmatched amplifier
BW_analysis = 2e9; % Bandwidth of the analysis (Hz)
f_analysis = (-BW_analysis/2:1e6:BW_analysis/2)+fc;
analyze(unmatched_amp, f_analysis);

% Create and analyze an RF network for the matched amplifier
input_match = rfckt.cascade('Ckts', ...
 {rfckt.shuntrlc('C',Cin),rfckt.seriesrlc('L',Lin)});
output_match = rfckt.cascade('Ckts', ...
 {rfckt.seriesrlc('L',Lout),rfckt.shuntrlc('C',Cout)});
matched_amp = rfckt.cascade('ckts', ...
 {input_match,unmatched_amp,output_match});
analyze(matched_amp,f_analysis);

% Load results of a longer simulation
load 'GainNoiseResults.mat' f GainSpectrum NFSpectrum;

% Plot expected and simulated Transducer Gain
StdBlue = [0 0.45 0.74];
StdYellow = [0.93,0.69,0.13];
hLineUM = plot(unmatched_amp, 'Gt', 'dB');
hLineUM.Color = StdYellow;
hold on
plot(f, GainSpectrum(:,1), '.', 'Color', StdYellow);
hLineM = plot(matched_amp, 'Gt', 'dB');
hLineM.Color = StdBlue;
plot(f, GainSpectrum(:,2), '.', 'Color', StdBlue);
legend({'G_t analysis - Unmatched', ...
 'G_t simulation - Unmatched', ...
 'G_t analysis - Matched', ...
 'G_t simulation - Matched'}, 'Location','SouthWest');

% Plot expected and simulated Noise Figure
hFig = figure;
hLineUM = plot(unmatched_amp, 'NF', 'dB');

7 Examples

7-66

hLineUM.Color = StdYellow;
legend('Location','NorthWest')
hold on
plot(f, NFSpectrum(:,1), '.', 'Color', StdYellow);
hLineM = plot(matched_amp, 'NF', 'dB');
hLineM.Color = StdBlue;
plot(f, NFSpectrum(:,2), '.', 'Color', StdBlue);
legend({'NF analysis - Unmatched', ...
 'NF simulation - Unmatched', ...
 'NF analysis - Matched', ...
 'NF simulation - Matched'}, 'Location','NorthWest');

 Measurement of Gain and Noise Figure Spectrum

7-67

Operation of the measurement unit

The measurement unit produces an input signal, DUT_in, that is composed of zero-mean white noise
and zero-variance impulse response signal. The latter is used to determine the frequency response of
the DUT gain and together with the white noise determine the DUT noise figure. The measurement
unit collects the DUT output signal, performs a windowed FFT on it and then facilitates statistical
calculations to obtain the gain and the noise figure of the DUT.

open_system([model '/Noise and Gain Measurement'], 'force');

The statistical calculations are done in the area marked in blue. The calculations use three inputs in
the frequency domain; Input Noise Only, Input Signal Only, and Output Signal. The Input Signal Only
is compared with the mean of the Output Signal to determine the DUT's gain, , at each frequency

7 Examples

7-68

bin. The variance of the Output Signal, with mean signal removed, yields the output noise of the DUT
system, , Together with the input noise fed to the DUT, , calculated by taking the variance of the
Input Noise Only, the Noise Figure, , can be calculated using the following formula:

Where, and in the above equation are the Signal-to-Noise ratios at the input and
output of the DUT. Finally, after conversion to decibels, the spectral results are divided into bins and
averaged within them to facilitate faster convergence. Also, to improve the noise calculation
convergence, the output noise variance is reset once the gain has reached convergence.

The properties affecting the operation of the measurement unit are specified in the block's mask
parameter dialog box as shown below:

 Measurement of Gain and Noise Figure Spectrum

7-69

These parameters are described below:

• Sample time - Sample time of the signal created by the measurement unit. The sample time also
governs the total simulation bandwidth captured by the measurement unit.

• FFT size - Number of FFT bins used to obtain the frequency domain representation of the signals
within the measurement unit.

• Beta of Kaiser window - The parameter of the Kaiser window used in all FFT calculations within
the measurement unit. Increasing widens the mainlobe and decreases the amplitude of the
sidelobes of the frequency response of the window.

• Spectrum coverage ratio - Value between 0 and 1, representing the part of total simulation
bandwidth processed by the measurement unit.

7 Examples

7-70

• Number of bins - Number of output frequency bins in the Gain and NF signals created by the
measurement unit. The FFT bins within the covered spectrum are re-distributed into those output
bins. Multiple FFT bins falling into the same output bin are averaged.

• Ratio of mean signal to RMS noise - The ratio of the mean signal amplitude to the RMS noise in
the DUT_in signal created by the measurement unit. A large value improves the convergence of
the DUT gain calculation, but reduces the accuracy of noise calculation due to numerical
inaccuracies.

• Gain tolerance - The threshold of gain variation relative to its average. When the threshold is hit,
the gain is considered as converged, triggering a reset for the output noise calculation.

close(hFig);
bdclose(model);
clear model hLegend hsm hLine hLegend StdBlue StdYellow hLineUM hLineM hFig;
clear GammaS Zs GammaL Zl GammaA Za Ya GammaB Zb Yb;
clear unmatched_amp BW_analysis f_analysis input_match output_match matched_amp;

See Also
Amplifier | Configuration | Inport | Outport

Related Examples
• “RF Noise Modeling” on page 8-184
• “Model LO Phase Noise” on page 7-42
• “Spot Noise Data in Amplifiers and Effects on Measured Noise Figure” on page 7-16
• “Explicitly Simulate Resistor Thermal Noise” on page 7-5

 Measurement of Gain and Noise Figure Spectrum

7-71

Idealized Baseband Amplifier with Nonlinearity and Noise

The example shows how to use the idealized baseband library Amplifier block to amplify a signal with
nonlinearity and noise. The Amplifier uses the Cubic Polynomial model with a Linear power
gain of 10 dB, an Input IP3 nonlinearity of 30 dBm, and a Noise figure of 3 dB.

System Architecture

The DSP Sine Wave block inputs two complex baseband tones with a power level of -20 dBm and -25
dBm at frequencies of -30 MHz and 20 MHz. In this block you can also:

• Increase the samples per frame to increase the simulation speed.
• Use output complexity and phase offset to control the I-Q relationship of each baseband signal
• Control the bandwidth of the scopes using the inverse of the sample time parameter.

The Amplifier block only accepts a vector input. The Sum block combines the two baseband signals
into a vector length equal to the samples per frame in the DSP Sine Wave block.

The Thermal Noise block creates a thermal noise floor input of -174 dBm/Hz.

Simulation Analysis

The Amplifier block with Linear power gain of 10 dB outputs tone with magnitude -10 dBm and
-15 dBm as seen in the Power plot. The Amplifier also increases the thermal noise floor to -161
dBm/Hz. You can calculate the output thermal noise using:

The following plots illustrate the differences in the input and output noise floors. The spurs appear at
70 MHz (2*20 MHz + 30 MHz) and -80 MHz (2*(-30 MHz) - 20 MHz). This shows the third order
intercept nature of the spurs.

7 Examples

7-72

Increasing the Slider value from 1 to 10, shows nonlinear effects in the plots. These are the Noise and
Power plots when the gain of the Slider is 10.

See Also
Amplifier

Related Examples
• “Modulate Quadrature Baseband Signals Using IQ Modulators” on page 7-104
• “Nonlinearities and Noise in Idealized Baseband Amplifier Block”

 Idealized Baseband Amplifier with Nonlinearity and Noise

7-73

Use Ladder Filter Block to Filter Gaussian Noise

This example provides complex random noise in Gaussian form as input to an LC Bandpass Pi block. A
DSP System Toolbox™ fallback for Spectrum Scope block plots the filtered output.

The DSP System Toolbox fallback for Random Source block produces frame-based output at 512
samples per frame. Its Sample time parameter is set to 1.0e-9 . This sample time must match the
sample time for the physical part of the model, which you provide in the Input Port block diagram.

The Input Port block specifies Finite impulse response filter length as 256 , Center frequency as
700.0e6 Hz, Sample time as 1.0e-9 , and Source impedance as 50 ohms.

7 Examples

7-74

 Use Ladder Filter Block to Filter Gaussian Noise

7-75

The LC Bandpass Pi block provides the inductances for three inductors, in order from source to load,
[1.4446e-9, 4.3949e-8, 1.4446e-9] . Similarly, it provides the capacitances for three
capacitors [3.5785e-11, 1.1762e-12, 3.5785e-11] .

The following plot shows a sample of the baseband-equivalent RF signal generated by this LC
Bandpass Pi block. Zero (0) on the frequency axis corresponds to the center frequency specified in
the Input Port block. The bandwidth of the frequency spectrum is 1/sample time. You specify the
Sample time parameter in the Input Port block.

The Axis Properties of the Spectrum Scope block have been adjusted to show the frequencies above
and below the carrier. The Minimum Y-limit parameter is -90 , and Maximum Y-limit is 0 .

7 Examples

7-76

Measure S-Parameter Data of Chebyshev Filter

Use the S-Parameter Testbench block to measure S-parameter data of a ninth-order Chebyshev Tee
LC low-pass filter.

Set the parameters of the Filter block as shown in this image.

Set the parameters of the S-Parameter Testbench block to measure the S-parameters of the
Chebyshev filter.

 Measure S-Parameter Data of Chebyshev Filter

7-77

Run the simulation to yield the measured S-parameter data for the Chebyshev filter.

7 Examples

7-78

Note that due to the symmetry and reciprocity of the filter, the plots for S11 and S22 and S12 and
S21 overlap each other. The results can be compared with the plot obtained from the Visualization
tab of the Filter block.

 Measure S-Parameter Data of Chebyshev Filter

7-79

In addition to viewing the results in the Spectrum Analyzer, you can export the result as an RF
Toolbox™ S-parameter object or as a Touchstone® file for further processing.

See Also
S-Parameter Testbench

Related Examples
• “Measure S-Parameter of Nonlinear System” on page 7-81

7 Examples

7-80

Measure S-Parameter of Nonlinear System

Use the S-Parameter Testbench block to measure the S-parameters of a nonlinear system. The system
shown here includes a device under test (DUT) with a linear filter followed by a nonlinear amplifier.
The system allows an external steady state input that is switched off initially. When the DUT is
nonlinear, the stimulus signal created in the S-Parameter Testbench block must be small enough to
operate in the linear region.

Set the S-Parameter Testbench block parameters as shown.

 Measure S-Parameter of Nonlinear System

7-81

Select Run to display the output of the S-Parameter Testbench block, S21 magnitude.

7 Examples

7-82

Open the mask parameters dialog box of the S-Parameter Testbench block and set the Input power
amplitude (dBm) parameter to 15 dBm. You can also vary the Input power amplitude (dBm)
parameter while the simulation is running. Rerun the simulation and observe the change in the
magnitude of the S21 of the system.

 Measure S-Parameter of Nonlinear System

7-83

Note the difference between the results. When the input power is significant enough to excite the
nonlinearity of the system, the dips in the spectrum of the filter fill up due to spectral regrowth. The
simulation results are correct in both cases, but the initial S-parameter measurement is invalid due to
nonlinearity.

While it is recommended that the stimulus signal be kept small when measuring S-parameter data, it
is also possible to measure the S-parameter data with a small stimulus signal around a large signal
operating point. To do this, set the switch to an input of 0.125 watts. In addition, in the Advanced tab
in the block parameters dialog box of the S-Parameter Testbench block, select the Adjust for steady-
state external signals parameter. This allows the testbench to first measure the output of the
system with an external signal and then subtract the external signal from the output to ensure that
only the small signal stimulus is accounted for in the calculation of the S-parameters.

7 Examples

7-84

Rerun the simulation and observe the S21 magnitude.

 Measure S-Parameter of Nonlinear System

7-85

When you compare the result with a zero-watt external signal and a 0.125-watt signal, the effect of a
large signal operation point is evident.

See Also
S-Parameter Testbench

Related Examples
• “Measure S-Parameter Data of Chebyshev Filter” on page 7-77

7 Examples

7-86

Simulation of RF Systems with Antenna Blocks

Use the Antenna block to incorporate the effect of an antenna into an RF simulation. In this model, a
single tone is fed to the transmitter and the power of the received signal at the output of the receiver
is calculated.

Set the Antenna_TX and Antenna_RX blocks to be isotropic radiators with the following
parameters:

 Simulation of RF Systems with Antenna Blocks

7-87

The following values are set upon loading the model:

• R = 100 [m]
• FreqCarrier = 5.0 [GHz]
• Gt = Gr = 7.9988 [dBi]
• Zin_t = Zin_r = 56.2947 - 4.2629i [Ohm]

where the antenna gains and impedances were calculated beforehand from dipoles backed by
circular reflectors.

With Antenna Toolbox™, it is possible to design the antenna using the Antenna Designer app
invoked directly from the block. To do so, change the choice of Source of the antenna model to
Antenna Designer and press the Create antenna button. Within the Antenna Designer app,
create a new antenna, choose Dipole from the Antenna Gallery , Circular from the Backing
Structure Gallery in the app toolstrip and select Accept. Note that the design frequency was
prepopulated with the RF system frequency of 5 GHz.

7 Examples

7-88

Select the Impedance button in the app toolstrip to analyze the structure and select the Update
Block button to update the block with the chosen antenna. Note that the Antenna block requires that
the designed antenna be analyzed for at least one frequency in the Antenna Designer app before
updating and using it in the block.

In the Antenna_TX block mask parameter dialog box, change the default Direction of departure to
0 degrees in azimuth and 90 degrees in elevation:

 Simulation of RF Systems with Antenna Blocks

7-89

Repeat the above steps to design Antenna_RX. However, the receiving antenna needs to be rotated
to face the transmitting antenna. To do so, in the Antenna Properties panel of the Antenna
Designer app, set Tilt to 180 degrees. Again, select the Impedance button and then press the
Update Block button to update the block. In the Antenna_RX block mask parameter dialog box,
change the Direction of arrival to 180 degrees in azimuth and -90 degrees in elevation. – 90-
degree elevation is chosen since the radiated signal that was transmitted in the positive z direction in
the coordinate system of the transmitter, is now arriving from the negative z direction in the
coordinate system of the receiver. Azimuth is set to 180 degrees to align vector fields of the
transmitter and receiver antennas.

Run the model again, and note that the output power remained almost exactly the same. This is since
the original gain and impedance values used for the isotropically radiating antenna in the beginning
were calculated from the same antennas and spatial settings. However, it is now possible to change
the antenna properties and observe the effect on the output power in the model. For example: Select
the 'Edit Antenna' button in the Antenna_TX block mask parameter dialog box to reopen the
Antenna Designer app. In the Antenna Properties panel of the Antenna Designer app, change
Tilt to 30 degrees and the TiltAxis to [0 1 0]. Select the Impedance button and then press the

7 Examples

7-90

Update Block button to update the block. Rerun the model to observe reduction of 2.5 dB in the
output received power due to the mismatch in antenna orientation.

See Also
Antenna

 Simulation of RF Systems with Antenna Blocks

7-91

Power Amplifier Characterization

This example shows how to characterize a power amplifier (PA) using measured input and output
signals of an NXP Airfast PA. Optionally, you can use a hardware test setup including an NI PXI
chassis with a vector signal transceiver (VST) to measure the signals at run time.

You can use the characterization results to simulate the PA using the
comm.MemorylessNonlinearity (Communications Toolbox) System object™ or Memoryless
Nonlinearity (Communications Toolbox) block. For a PA model with memory, you can use Power
Amplifier block. You can use these models to design digital predistortion (DPD) using comm.DPD
(Communications Toolbox) and comm.DPDCoefficientEstimator (Communications Toolbox)
System objects or DPD (Communications Toolbox) and DPD Coefficient Estimator (Communications
Toolbox) blocks. For more information, see “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities” (Communications Toolbox).

Optional Hardware and Software

This example can run on an NI PXI chassis with a VST to measure PA input and output signals during
run time. The VST is a high-bandwidth RF instrument that combines a Vector Signal Generator (VSG)
with a Vector Signal Analyzer (VSA). The following NI PXI chassis configuration was used to capture
the saved signal:

• NI PXIe-5840 Vector Signal Transceiver (VST)
• NI PXIe-4139 Source Measure Unit (SMU)
• NI PXIe-4145 SMU
• NI RFmx SpecAn software
• NI-RFSG software
• NI-RFSG Playback Library software

As the device under test (DUT), this example uses an NXP Airfast LDMOS Doherty PA with operating
frequency 3.6-3.8 GHz and 29 dB gain. This PA requires 29V, 5V, 3 V, 1.6V and 1.4V DC bias, which
are provided using PXIe-4139 and PXIe-4145 SMUs.

Install MATLAB® on the NI PXI controller to run this example with the hardware setup, which is
illustrated in the following figure. MATLAB, running on the PXI controller, generates test waveform
and downloads the waveform to the VSG. The VSG transmits this test waveform to the PA and the
VSA receives the impaired waveform at the PA output. MATLAB collects the PA output from the VSA
and performs PA characterization.

7 Examples

7-92

https://www.ni.com/en-us/support/downloads/software-products/download.rfmx-specan.html#341840
https://www.ni.com/en-us/support/downloads/drivers/download.ni-rfsg.html#344209
https://www.ni.com/en-us/support/downloads/drivers/download.ni-rfsg-playback-library.html#332845

Set dataSource variable to "Hardware" to run a test signal though the PA using the hardware setup
described above. The test signal can be either a 5G-like OFDM waveform or two tones, as described
in the following section. Set dataSource variable to "From file" to use prerecorded data.

dataSource = ;

Generate Test Signals

To generate a test signal, specify the type of test signal as "OFDM" or "Tones". Specifying the
testSignal as "OFDM" uses a 5G-like OFDM waveform with 64-QAM modulated signals for each
subcarrier. "Tones" uses two tones at 1.8 MHz and 2.6 MHz, to test the intermodulation caused by
the PA.

The example will use an oversampling factor of 7 to run the grid search up to an expected seventh-
order nonlinearity, and normalize the waveform amplitude.

testSignal = ;
switch testSignal
 case "OFDM"

 bw = ;
 [txWaveform,sampleRate,numFrames] = helperPACharGenerateOFDM(bw);
 case "Tones"
 bw = 3e6;
 [txWaveform,sampleRate,numFrames] = helperPACharGenerateTones();
end
txWaveform = txWaveform/max(abs(txWaveform)); % Normalize the waveform

Hardware Test

If the dataSource variable is set to "From file", load the prerecorded data. If the dataSource
variable is set to "Hardware", run the test signal through the PA using the VST. Create a
helperVSTDriver object to communicate with the VST device. Set the resource name to the resource
name assigned to the VST device. This example uses 'VST_01'. For NI devices, you can find the
resource name using the NI Measurement & Automation Explorer (MAX) application.

if strcmp(dataSource, "Hardware")
 VST = helperVSTDriver('VST_01');

Set the expected gain values of the DUT and the attenuator. Since PA output is connected to a 30 dB
attenuator, set VSA external attenuation to 30. Set the expected gain of the DUT to 29 dB and gain
accuracy to 1 dB. Set the acquisition time to a value that will result in about 40k samples. Set the
target input power to 8 dBm. You can increase this value to drive the PA more into the non-linear
region.

 VST.DUTExpectedGain = 29; % dB
 VST.ExternalAttenuation = 30; % dB
 VST.AcquisitionTime = 0.9e-3*(53.76e6/sampleRate); % seconds

 VST.DUTTargetInputPower = ; % dBm
 VST.CenterFrequency = 3.7e9 % Hz

Download the test waveform to the VSG. Measure PA output.

 writeWaveform(VST,txWaveform,sampleRate,testSignal)
 results = runPAMeasurements(VST);

 Power Amplifier Characterization

7-93

 release(VST)
else
 % Load the prerecorded results from VST
 switch testSignal
 case "OFDM"
 dataFileName = sprintf("helperPACharSavedData%dMHz",bw/1e6);
 case "Tones"
 dataFileName = "helperPACharSavedDataTones";
 end
 load(dataFileName,"results","sampleRate","overSamplingRate","testSignal","numFrames")
end

Map results into local variables.

referencePower = results.ReferencePower;
measuredAMToAM = results.MeasuredAMToAM;
paInput = results.InputWaveform;
paOutput = results.OutputWaveform;
linearGaindB = results.LinearGain;

Plot the spectrum of the test signal using the spectrumAnalyzer (DSP System Toolbox) function.

saInput = helperPACharPlotInput(paInput, sampleRate, testSignal, bw);

Plot the AM/AM characteristics of the PA.

helperPACharPlotSpecAnAMAM(referencePower, measuredAMToAM)

7 Examples

7-94

For a better view, focus on gain vs input power instead of output power vs input power and plot
again.

helperPACharPlotSpecAnGain(referencePower, measuredAMToAM)

 Power Amplifier Characterization

7-95

The PA is mostly linear of the input power range -1 to 17 dBm, with only about 1dB variation over that
range. The width of the gain curve is due to the memory effects of the PA.

PA Characterization

Use the measured PA input and output data to model the PA. Then, you can use this model to simulate
a system that contains this PA and fine tune the parameters. This example considers three models:
memoryless nonlinearity, memory polynomial and memory polynomial with cross terms.

Memoryless Nonlinearity Model

Memoryless nonlinear impairments distort the input signal amplitude and phase. The amplitude
distortion is amplitude-to-amplitude modulation (AM/AM) and the phase distortion is amplitude-to-
phase modulation (AM/PM). The comm.MemorylessNonlinearity (Communications Toolbox)
System object and Memoryless Nonlinearity (Communications Toolbox) block implements several
such distortions. Use the PA input and output data to create a lookup table to use with this object or
block.

To characterize the AM/AM transfer function, calculate the average output power for a range of input
power values. Measurements are in volts over an overall 100 ohm impedance, split between the
transmitter and receiver. Convert the measured baseband samples to power values in dBm. The +30
dB term is for dBW to dBm conversion and the -20 dB term is for the 100 ohm impedance.

paInputdBm = mag2db(abs(paInput)) + 30 - 20;
paOutputdBm = mag2db(abs(paOutput)) + 30 - 20;

7 Examples

7-96

Partition the input power values into bins. The edges variable contains the bin edges, and the idx
variable contains the index of the bin values for each input power value.

[N,edges,idx] = histcounts(paInputdBm, 'BinWidth', 0.5);

For each bin, calculate the midpoint of the bin, average output power and average phase shift. Do not
include any input power value that is less than 20 dB below the maximum input power. Store the
results in a three-column matrix where the first column is the input power in dBm, second column is
the output power in dBm and last column is the phase shift.

minInPowerdBm = max(paInputdBm) - 20;
minIdx = find(edges < minInPowerdBm, 1, 'last');
tableLen = length(edges)-minIdx-1;
inOutTable = zeros(tableLen,2);
for p = minIdx+1:length(edges)-1
 inOutTable(p-minIdx,1) = mean(paInputdBm(idx == p)); % Average input power for current bin
 inOutTable(p-minIdx,2) = mean(paOutputdBm(idx == p)); % Average output power for current bin
 inOutTable(p-minIdx,3) = mean(angle(paOutput(idx == p)./paInput(idx == p))); % Average phase shift for current bin
end

Use the table in the comm.MemorylessNonlinearity System object to model the PA. Compare the
estimated output with the actual output.

pa = comm.MemorylessNonlinearity('Method','Lookup table','Table',inOutTable,'ReferenceImpedance',100)

pa =
 comm.MemorylessNonlinearity with properties:

 Method: 'Lookup table'
 Table: [40×3 double]
 ReferenceImpedance: 100

paOutputFitMemless = pa(paInput);
err = abs(paOutput - paOutputFitMemless)./abs(paOutput);
rmsErrorMemless = rms(err)*100;
disp(['Percent RMS error in time domain is ' num2str(rmsErrorMemless) '%'])

Percent RMS error in time domain is 12.1884%

To visualize both the measured output signal and the fitted output signal, plot the actual and fitted
time-domain output voltages.

helperPACharPlotTime(paOutput, paOutputFitMemless, sampleRate)

 Power Amplifier Characterization

7-97

Plot the magnitude of the gain.

helperPACharPlotGain(paInput, paOutput, paOutputFitMemless)

7 Examples

7-98

Memory Polynomial Model

The memory polynomial model includes the memory effects of the PA in addition to the nonlinear
gain. Use the multipurpose helper function helperPACharMemPolyModel to determine the complex
coefficients of a memory polynomial model for the amplifier characteristics. Set the model type to
'Memory Polynomial'.

modType = ;

Perform a grid search as shown in Appendix Grid Search for Memory Length and Polynomial Order
on page 7-102. Based on this grid search results, the best fit is obtained when memory length and
polynomial degree values are as follows:

memLen = 5;
degLen = 5;

Perform the fit and RMS error calculation for these values. Only half of the data is used to compute
the fitting coefficients, as the whole data set will be used to compute the relative error. The helper
function helperPACharMemPolyModel calculates the coefficients of the model.

numDataPts = length(paInput);
halfDataPts = round(numDataPts/2);

The helper function helperPACharMemPolyModel is editable for custom modifications, and to return
the desired matrix. The PA model has some zero valued coefficients, which results in a rank deficient
matrix.

 Power Amplifier Characterization

7-99

fitCoefMatMem = helperPACharMemPolyModel('coefficientFinder', ...
 paInput(1:halfDataPts),paOutput(1:halfDataPts),memLen,degLen,modType);

Warning: Rank deficient, rank = 24, tol = 1.870608e-01.

disp(abs(fitCoefMatMem))

 23.1549 8.8540 17.8385 13.3026 3.2168
 0 11.7686 26.4685 23.1937 5.5476
 20.9745 16.8531 25.7336 22.1925 5.0688
 32.6199 8.4042 9.4903 10.6984 2.5613
 15.3875 2.3630 2.0867 2.9339 0.7370

To validate the fitting, use the helper function to compute percent RMS error with respect to the
measured signal.

rmsErrorTimeMem = helperPACharMemPolyModel('errorMeasure', ...
 paInput, paOutput, fitCoefMatMem, modType);
disp(['Percent RMS error in time domain is ' num2str(rmsErrorTimeMem) '%'])

Percent RMS error in time domain is 6.1056%

To visualize both the measured output signal and the fitted output signal, plot the actual and fitted
time-domain output voltages.

paOutputFitMem = helperPACharMemPolyModel('signalGenerator', ...
 paInput, fitCoefMatMem, modType);
helperPACharPlotTime(paOutput, paOutputFitMem, sampleRate)

7 Examples

7-100

Plot the magnitude of the gain.

helperPACharPlotGain(paInput, paOutput, paOutputFitMem)

Discussions

The percent RMS estimation error in time domain for the memoryless nonlinearity model, which is
between 9% and 13%, is about 3 to 4 times more than the error for the memory polynomial model is,
which is between 2% and 6%, for the OFDM signals with different bandwidths.

Check the estimation error in frequency domain by plotting the spectrum of the actual PA output
together with the spectrum of the estimated PA output for all three models. The memoryless
nonlinearity table lookup model is not able to simulate the spectral growth seen in the measured PA
output. For this PA, memory polynomial model provides a good approximation of the PA
characteristics.

sa = helperPACharPlotSpectrum(...
 [paOutput paOutputFitMemless paOutputFitMem],...
 {'Actual PA Output','Memoryless Model Output', ...
 'Memory Polynomial Output'},...
 sampleRate,testSignal);

 Power Amplifier Characterization

7-101

The helper function helperPACharMemPolyModel can also use the memory polynomial with cross
terms model, which includes the leading and lagging memory cross terms in addition to the memory
effects of the PA and the nonlinear gain. Set the model type to 'Cross-Term Memory' to explore
this model.

For further exploration, try different memory length and polynomial degree combinations. Modify the
oversampling factor and explore its effect on the PA model performance. Modify the helper function
helperPACharMemPolyModel to try different PA models.

Using PA Model for DPD Testing

Save the coefficient matrix of the PA model to be used in the Power Amplifier block for simulation at
the system-level in the “Digital Predistortion to Compensate for Power Amplifier Nonlinearities”
(Communications Toolbox).

frameSize = floor(length(paInput)/numFrames);
paIn.signals.values = double(reshape(paInput(1:frameSize*numFrames,1),numFrames,frameSize));
paIn.signals.dimensions = frameSize;
paIn.time = [];
save('PAcoefficientsAndInput.mat','modType','fitCoefMatMem','memLen','degLen','paIn','linearGaindB')

Appendix: Grid Search for Memory Length and Polynomial Order

Uncomment following lines to perform the grid search when the cost function is the percent RMS
error in time. First choose the model type.

7 Examples

7-102

modType = ;
% rmsErrorTime = helperPACharGridSearchTime(paInput,paOutput,modType,overSamplingRate)

Repeat the search when the cost function is the percent RMS error in frequency.

% rmsErrorFreq = helperPACharGridSearchFrequency(paInput,paOutput,modType,overSamplingRate)

See Also

Related Examples
• “Digital Predistortion to Compensate for Power Amplifier Nonlinearities” on page 8-78
• “Power in Simulink Sources and Signals” on page 8-108
• “Power Ports and Signal Power Measurement in RF Blockset” on page 8-11

 Power Amplifier Characterization

7-103

Modulate Quadrature Baseband Signals Using IQ Modulators

This example shows how to modulate quadrature baseband signals using two different RF Blockset™
blocks. You can use either an idealized baseband Mixer block or a circuit envelope IQ Modulator
block in your model to modulate quadrature baseband signals to the RF level. Observe the
impairments in the modulated output signal due to gain imbalance, third-order intercepts (OIP3) and
system noise in the complex output power density and output power spectrum analyzers.

The input in-phase and quadrature baseband signals are each composed of two tones at 10 MHz and
15 MHz and the power of each baseband signal is -30 dBm. When using a circuit envelope IQ
Modulator block to modulate the signal, you must use Inport and Outport blocks to set the input and
output carrier frequencies. The explicit noise sources in the model set the noise floor in each signal
branch.

Set Parameters

For idealized baseband Mixer block

• Mixer type — IQ Modulator
• Mixer sideband — Upper
• Conversion gain — 10 dB
• IIP3 (dBm) — 10 dBm
• Select Include mixer noise
• *I/Q gain imbalance (dB) — 0.1 dB
• Noise figure (dB) — 3.9752 dB

The Noise figure (dB) is calculated using this equation

(Room Temperature Noise Floor,Boltmanns x 290) – dB_to_dBm – CE_IQModulator_Noise_Floor –
IDBB_Mixer_Conversion_Gain

= 10 x log10(1.3806452e-23 x 290) – 30 – 160 – 10 = 3.9752 dB

For circuit envelope IQ Modulator block

• Available power gain — 10 dB
• Local oscillator frequency — 2 GHz
• IP3 — 10 dBm
• I/Q gain mismatch — 0.1 dB
• LO to RF Isolation — inf dB
• Noise Floor — –160 dBm/Hz
• Select Add Image Reject filter

Since the input signals are baseband signals, the inport blocks Carrier frequencies are set to 0
and the input signal power is interpreted correctly. For the Ideal Baseband Mixer branch, a Gain
block with Gain equal to 1/(sqrt(2)) is required. If the input signals are complex baseband, then
the gain is set to 1/2.

7 Examples

7-104

Run the model and observe the output of the Spectrum Analyzer blocks.

Analyze Complex Output Power Density Plot

In the complex output power density spectrum analyzer plot, the noise floor of the signal is at – 160
dBm/Hz for the two output signals OutportRF and Ideal IQ Mod.

 Modulate Quadrature Baseband Signals Using IQ Modulators

7-105

Analyze Complex Output Spectrum Analyzer Plot

In the complex output spectrum analyzer plot, the modulated signal along with other signal tones
produced by the impairments are shown. The output power levels at 10 MHz and 15 MHz are – 20
dBm. The level of the other output tones are correct for circuit envelope, since it is a multi-tone
simulator. Any differences between the modulated signals, 10 MHz and 15 MHz, result from different
model implementations for the I/Q gain and phase mismatch. You can calculate the output power
level using this formula:

Output_Power_Level(dBm) = Input_Power_Level(dBm) + Gain(dBm) = – 30 + 10 = – 20

See Also
Mixer

Related Examples
• “Idealized Baseband Amplifier with Nonlinearity and Noise” on page 7-72
• “Nonlinearities and Noise in Idealized Baseband Mixer Block”

7 Examples

7-106

Intermodulation Analysis of Mathematical Amplifier

This example uses a baseband-equivalent multitone signal as input to the Amplifier block. A
Simulink® Slider Gain block enables you to vary the gain from 1 to 10.

The Input scope block displays the spectrum of the two-tone signal with gain set to the default 1.

The Output scope block shows the output spectrum of the two-tone input signal when the input signal
passes through the Amplifier block, with the Method parameter set to Hyperbolic tangent . The
example uses the default Amplifier block IIP3 (dBm) value of 30 . It uses no AM/PM conversion. The
example specifies thermal noise as Noise figure, for which it uses the default 3.01 dB.

 Intermodulation Analysis of Mathematical Amplifier

7-107

To view the intermodulation performance at the output, double click the Slider Gain blocks and
change the gain while the model is running.

See Also
“Idealized Baseband Amplifier with Nonlinearity and Noise” on page 7-72

7 Examples

7-108

Create Virtual Connections Using Connection Label Block

This example shows how to use a Connection Label block to create a virtual connection between two
conserving ports.

System Architecture

The Connection Label blocks in this example connect RF and local oscillator (LO) signals to the 7.5
dB Circuit Envelope Mixer block. To enumerate constant inputs and carrier frequencies in input
frequencies, supply one Watt 803 MHz and 805 MHz RF signals through the Inport block by setting
the Carrier frequencies parameter to [803 805] MHz . Use a Continuous Source block to generate
a local oscillator (LO) signal. Translate the Outport block output from sqrt(power) to (power)dB.

System Analysis

Available gain of RF signals at 3 MHz and 5 MHz is 7.5 dB. To increase the speed of this simulation,
set the Configuration block Fundamental tones and Harmonic order parameters to [800 1] MHz
and [1 5], respectively.

 Create Virtual Connections Using Connection Label Block

7-109

Model Wilkinson Power Divider

Use the Divider block to design a 1:4 Wilkinson power divider. You can use the Number of divider
outports parameter in the block to design a Wilkinson power divider with up to 65 ports. You can
also design a Wilkinson power divider that works as a combiner by reversing the inputs and outputs.

1 Open the model and observe that the three input carrier frequencies are set to [0 3 5] MHz in
the Sinusoid block.

2 Run the model.
3 In the setup in this model, the output waveform is out of phase with the input. The output

magnitude is Vout = Vin/sqrt(N), where N is the number of outputs. The other waveforms
Vin_Q are noise added and transmitted by the system. Add or delete load resistors or Outport
blocks, rerun the simulation, and check the magnitude of the outputs.

7 Examples

7-110

 Model Wilkinson Power Divider

7-111

7 Examples

7-112

 Model Wilkinson Power Divider

7-113

See Also
Coupler | Circulator

Related Examples
• “100 Watt TR Module for S-Band Applications” on page 8-191

7 Examples

7-114

Modulate Input Signal Onto Square Carrier Wave

Use the Inport block to modulate an input signal onto a square carrier wave in the circuit envelope
simulation environment.

Open the model and double-click the Inport block to set the parameters as follows.

• Source type — power
• Source impedance (Ohm) — 50
• Carrier frequencies — 3e9 Hz
• Use square wave — on
• Number of Fourier Coefficients — 15
• DC Bias — – 0.5
• Duty Cycle (%) — 50
• Ground and hide negative terminals — on

Run the model and view the result in the scope.

 Modulate Input Signal Onto Square Carrier Wave

7-115

Double-click the Inport block and select the View button to plot the simulation frequencies for the
square carrier wave and the approximate square wave with RSM error of the approximation.

7 Examples

7-116

Change the DC Bias value to 0, press Apply, and then press View again. The DC coefficient has
increased and the Carrier wave function is between 0 and 1.

 Modulate Input Signal Onto Square Carrier Wave

7-117

Run the model. The scope now shows that the modulated square wave is alternating between 0 and
the ramp envelope.

7 Examples

7-118

In the Inport block, change the Number of Fourier Coefficients from 15 to 30 . Press Apply and
select the View button to see the effect on the expected square wave.

 Modulate Input Signal Onto Square Carrier Wave

7-119

The calculated RMS Error is down from 0.085 to 0.0581.

Double-click the Outport block to open its mask and change the value of the Carrier frequencies
parameter from 3e9*[0:15-1] to 3e9*[0:30-1]. Rerun the model to view the change to the
output signal in the scope. The ripples are now denser and smaller (except for the expected Gibbs
effect at the discontinuities) with more Fourier coefficients to approximate the square wave.

7 Examples

7-120

You can also try:

• Changing the Number of Fourier coefficients, DC Bias, and Duty Cycle parameters to
different values to view the effect on the visualization plot and output.

• Changing the Ramp block to another function to represent a different envelope.
• Changing the RF system (for example, adding a nonlinear amplifier) and output complex baseband

signals. The input square wave is created without RMS normalization, so the peak values
correspond to the Fourier coefficients, while the output complex baseband are RMS normalized,
and the values at the output are expected to be 1/sqrt(2) smaller than the Fourier coefficients seen
in the visualization plot.

See Also
Outport

Related Examples
• “Attenuate Signal Power” on page 7-6

 Modulate Input Signal Onto Square Carrier Wave

7-121

Time-Domain Filtering of RF Complex Baseband Signals in
Simulink

This example shows you how to use the Idealized Baseband Filter block to filter of RF complex
baseband signals in Simulink®. The Idealized Baseband Filter block performs time-domain or
frequency-domain simulation for Butterworth, Chebyshev, or inverse Chebyshev filters. The example
compares time-domain simulation of RF complex baseband signals between Idealized Baseband and
Circuit Envelope Filter blocks in Simulink® and the circuit envelope domain, respectively. The
Idealized Baseband Filter block allows you to design single-carrier perfectly matched RF systems,
whereas the Circuit Envelope (CE) Filter block allows you to design multi-carrier RF systems with
impedance mismatches.

System Architecture

This example uses three filter blocks:

• Idealized Baseband Filter block simulated using Interpreted execution. This option performs
block signal processing using the MATLAB® interpreter, and shortens startup time, but the speed
is slower than Code generation.

• Idealized Baseband Filter block simulated using Code generation. This option performs block
signal processing using generated C code. The first time you run a simulation, Simulink generates
C code for the block. The C code is reused for subsequent simulations, as long as the model code
path does not change. This option requires additional startup time, but the speed of the
subsequent simulations is faster than interpreted execution.

• Circuit Envelope Filter block implemented using Transfer function. This option allows you to
model an analog filter using two-port S-parameters.

Define Simulation Parameters

Define sample time, samples per frame, and carrier frequency as the simulation parameters.

sampleTime = 8e-6;
samplesPerFrame = 128;
carrierFrequency = 1e9;

Set Stop Time to sampleTime*1e3.

Open Model

The Filter type parameter in the three filter blocks is set to Butterworth. Set the Carrier
frequency (Hz) parameter to 1e9 Hz, and Solver type to NDF2. For the Circuit Envelope Filter
block, specify the carrier frequency, solver type, and frame size in the Configuration block, and for
the Idealized Baseband blocks, specify the the carrier frequency and solver type in the block masks.
The frame size for the Idealized Baseband Filter blocks is automatically detected by the software.

open_system('idealfilter.slx')

7 Examples

7-122

Simulate Model

Simulate the model using the sim('idbbfilter.slx') command.

sim('idealfilter.slx');

 Time-Domain Filtering of RF Complex Baseband Signals in Simulink

7-123

Compare the real and imaginary output waveforms and observe that the output waveforms are
identical. Idealized Baseband and Circuit Envelope Filter blocks are simulated using NDF2, a fixed-
step time-domain solver. This solver balances narrowband and wideband accuracy and is suitable for
situations where the frequency content of the signals in the system is unknown relative to the Nyquist
rate.

See Also
Filter | Configuration | Filter

Related Examples
• “Model RF Complex Baseband S-Parameters in Simulink” on page 7-125

7 Examples

7-124

Model RF Complex Baseband S-Parameters in Simulink

This example shows you how to use the Idealized Baseband S-parameters block to model the RF
complex baseband S-parameters in Simulink®. The example compares different solvers that you can
use to model the RF complex baseband S-parameters in Simulink and in the circuit envelope domain.
The Idealized Baseband S-parameters block allows you to design single-carrier perfectly matched RF
systems, whereas the Circuit Envelope (CE) S-parameter block allows you to design multi-carrier RF
systems with impedance mismatches.

System Architecture

This example uses of two systems. The first system compares fixed-step time-domain solvers, and the
second system compares continuous time-domain solvers and frequency-domain solvers.

Fixed-step solvers include:

• NDF2 — Balance narrowband and wideband accuracy. This solver is suitable for situations where
the frequency content of the signals in the system is unknown relative to the Nyquist rate.

• Trapezoidal — Perform narrowband simulations. Frequency warping and the lack of damping
effects make this method unsuitable for most wideband simulations.

• Backward Euler — Simulate the largest class of systems and signals. Damping effects make this
solver suitable for wideband simulation, but overall accuracy for this solver is low.

Continuous solvers include:

• ode15s – Solve stiff differential equations and DAEs using a variable order method
• ode23s – Solve stiff differential equations using a low-order method
• ode23t (trap) – Solve moderately stiff ODEs and DAEs using the trapezoidal rule
• ode23tb (trap+BE) – Solve stiff differential equations using the trapezoidal rule and backward
differentiation formula

Frequency-domain (digital filter) modeling uses a 1-D digital filter.

The systems also model and compare the S-parameters in the interpreted execution and code
generation simulation modes.

Define Simulation Parameters

Define sample time, samples per frame, and carrier frequency as the simulation parameters.

sampleTime = 8e-6;
samplesPerFrame = 512;
carrierFrequency = 2.45e9;

Open and Run Fixed-Step Solver System

Open the fixed-step solver system.

open_system("idealsparams_fs.slx")

 Model RF Complex Baseband S-Parameters in Simulink

7-125

Run the fixed-step solver system.

sim("idealsparams_fs.slx");

7 Examples

7-126

All solutions for a particular fixed-step time-domain solver are the same after the differences in the
initialization time disappear. Compare Ideal and CE S-parameter characteristics using the mask
visualization tabs.

Open and Run Continuous Time Domain Solvers and Frequency Domain Solvers System

Open the continuous time-domain and frequency-domain modeling system.

open_system("idealsparams_ode.slx")

 Model RF Complex Baseband S-Parameters in Simulink

7-127

7 Examples

7-128

Run the modeling system.

sim("idealsparams_ode.slx");

 Model RF Complex Baseband S-Parameters in Simulink

7-129

All solutions for a particular ODE solver are the same. But the solutions differ for the Ideal and CE
frequency-domain solvers as they use different digital filter windowing schemes.

See Also
S-parameters | Configuration | S-Parameters

Related Examples
• “Time-Domain Filtering of RF Complex Baseband Signals in Simulink” on page 7-122

7 Examples

7-130

RF Blockset Examples

8

Getting Started with RF Modeling

Learn how to use the RF Budget Analyzer app to build a simple RF receiver and then create an RF
Blockset™ Circuit Envelope multi-carrier model to perform simulation.

Build a Cascade (row vector) of RF Elements.

You can build and analyze an RF cascade by adding elements characterized by their data sheet
specifications.

You can use the RF Budget Analyser app and drag and drop new elements, or you can script the
chain elements using MATLAB® commands. If you are not familiar with the syntax, you can start with
app and generate a MATLAB script.

Add elements to your chain in the following order:

• Filter specified by an S-parameters Touchstone file
• Low Noise Amplifier (LNA)
• Direct conversion demodulator
• Baseband amplifier

elements(1) = nport('sawfilterpassive.s2p');
elements(2) = amplifier(...
 'Name','LNA', ...
 'Gain',18, ...
 'NF',3, ...
 'OIP3',10);
elements(3) = modulator(...
 'Name','Demod', ...
 'Gain',10, ...
 'NF',6.4, ...
 'OIP3',36, ...
 'LO',2.45e9, ...
 'ConverterType','Down');
elements(4) = amplifier(...
 'Gain',20, ...
 'NF',11.3, ...
 'OIP3',42);

Inspect RF Budget Using RF Budget Analyzer App

Construct an rfbudget object. The MATLAB command window dynamically displays the budget
analysis results.

b = rfbudget(...
 'Elements',elements, ...
 'InputFrequency',2.45e9, ...
 'AvailableInputPower',-70, ...
 'SignalBandwidth',8e6)

b =

 rfbudget with properties:

8 RF Blockset Examples

8-2

 Elements: [1x4 rf.internal.rfbudget.Element]
 InputFrequency: 2.45 GHz
 AvailableInputPower: -70 dBm
 SignalBandwidth: 8 MHz
 Solver: Friis
 AutoUpdate: true

 Analysis Results
 OutputFrequency: (GHz) [2.45 2.45 0 0]
 OutputPower: (dBm) [-73.04 -55.04 -45.04 -25.04]
 TransducerGain: (dB) [-3.044 14.96 24.96 44.96]
 NF: (dB) [2.326 5.699 5.823 5.868]
 IIP2: (dBm) []
 OIP2: (dBm) []
 IIP3: (dBm) [Inf -5.674 -5.782 -7.865]
 OIP3: (dBm) [Inf 10 19.89 37.81]
 SNR: (dB) [32.62 29.25 29.12 29.08]

Or you can visualize the rfbudget object in the app using the MATLAB command show(b).

Generate RF Blockset Model

Use the Export button in the RF Budget Analyzer app to create an RF Blockset model or:

exportRFBlockset(b)
save_system(gcs,'model_1')

 Getting Started with RF Modeling

8-3

You can use this model for multi-carrier circuit envelope simulation. The Input Port / Output Port
ports and Configuration block are set up correctly and you can copy the model for use in any other
Simulink® testbench.

• The input port specifies a complex powerwave signal centered at 2.45 GHz.
• The output ports terminate the cascade and extract the envelope centered at DC (0 Hz). The I and

Q signals are real baseband signals.
• The configuration block runs the simulation for a total of eight simulation frequencies in order to

capture the non linearity introduced by the demodulator and amplifiers.
• The simulation stop time in this case is set equal to 0. This means that the simulation does only a

static analysis of the model (harmonic balance).

Observe and understand the model blocks:

• The S-parameter block describing the filter uses rational fitting in order to simulate frequency
data in the time domain. Notice that at 2.45 GHz it introduces a phase rotation of approximately
-58 degrees.

• Both amplifiers specify IP3, but you can also specify IP2.
• The demodulator includes ideal channel selection filters. Additional impairments can be added

such as LO leakage and I/Q imbalance.

Simulate the model to compare the output power values with the RF Budget Analyzer app values.
Notice that due to the phase rotation introduced by the S-parameter block, the complex input signal
is partly downconverted on the I and on the Q branch, and thus the output power on the two
branches is different. For this reason, the gain and other specs of direct conversion receivers are
measured at an arbitrary low frequency.

Generate Measurement Testbench

Use the Export button in the RF Budget Analyzer app to create a measurement testbench or:

exportTestbench(b)
save_system(gcs,'model_2')

8 RF Blockset Examples

8-4

To measure the gain, noise figure, and OIP3 use the RF Measurement Unit dialog box to choose the
value you want to verify.

Observe and understand the testbench block:

• You can measure the output on the I or Q branches.
• Measurements are done at an arbitrary low frequency
• Measurements are done in the time domain over an arbitrary signal bandwidth

Run the following simulation:

• Measure the gain (disable the noise for accurate measurements).
• Measure the NF. Reduce the baseband bandwidth to 8e3 for narrowband measurements. In this

way, the noise figure measurement is not affected by the filter selectivity.
• Measure the OIP3. Keep the smaller baseband bandwidth and disable noise for accurate

measurements.

On comparing, you will see that the values of gain, noise figure, and IP3 match the values in the RF
Budget Analyzer app reported in the testbench.

See Also

RF Budget Analyzer| “Using RF Blockset for the First Time”| “Power Ports and Signal Power
Measurement in RF Blockset” on page 8-11| “Create Custom RF Blockset Models” on page 8-99

 Getting Started with RF Modeling

8-5

Passband Signal Representation in Circuit Envelope

This model shows the relationship between two signal representations in RF Blockset™ Circuit
Envelope: complex baseband (envelope) signal and passband (time domain) signal. The step size of a
RF Blockset solver is usually much larger than the period of the carrier, so upsampling is necessary to
construct a reasonable passband signal.

System Architecture

The system consists of:

• Simulink blocks that generate a complex I+jQ input baseband signal.
• A RF Blockset Inport block that specifies the carrier frequency of the signal as f = 3GHz .
• A simple RF Blockset system that consists of an Amplifier with 0dB gain and matching 50 Ohm

load (that is, its input and output signals are identical). It has two outports: baseband (where the
complex envelope signal I+jQ is represented as magnitude and angle) and passband, where the
actual time domain signal is reconstructed.

• A Scope block that displays baseband magnitude (that is, the envelope of the signal) versus the
passband (actual) signal.

model = 'simrfV2_passband';
open_system(model)

Definition of the Passband Signal

RF Blockset interprets the complex signal , as a modulation (envelope) of the sinusoidal
carrier signal with a frequency . By default, RF Blockset assumes that the carrier signal is
normalized (that is, its average power is equal to), so the passband signal is

With this definition, the average power of the signal is

In this example, is a ramp that goes from to and .

8 RF Blockset Examples

8-6

scope = [model '/Scope'];
set_param(scope, 'YMax','1.5');
set_param(scope, 'YMin','-1.5');
open_system(scope)
sim(model);

When the Normalize Carrier Power Option on the Configuration block is not selected, RF Blockset
assumes that represent the peak values of the carrier, that is

and the average power of the signal is therefore

params = [model '/Configuration'];
set_param(params, 'NormalizeCarrierPower', 'off')
set_param(scope, 'YMax','1.1');
set_param(scope, 'YMin','-1.1');
sim(model);

 Passband Signal Representation in Circuit Envelope

8-7

Effects of the Normalize Carrier Power Option

It is very important to understand that when you change the Normalize Carrier Power option, RF
Blockset changes the interpretation of the complex input/output baseband signal.
Consider the simple case when the input baseband voltage is constant, and . The
amplifier has a gain of 0dB, which means that the output signal is the same as the input.

When the Normalize option is checked, the output baseband voltage is equal to , the output
passband voltage is , and the average power at the R = 50 Ohm load is .

When the Normalize option is unchecked, the output baseband signal does not change, ,
while the output passband signal is now , which means that the average power is

.

In other words, for linear models the Normalize option does not affect the baseband output, but
affects the actual passband signal and the average power formula.

Note that the zero carrier frequency is special: the passband and baseband representations for
are always the same:

8 RF Blockset Examples

8-8

Simulation Step Size Versus Passband Output Step Size

In general, the RF Blockset simulation step is much larger than the period of the carrier, which allows
faster simulation compared to regular methods. For such time steps the passband output is severely
undersampled and exhibits aliasing effects. Set the Step Size value of the Configuration block to
the large value 1e-8/7

set_param(params, 'StepSize', '1e-8/7')
sim(model);

To obtain a realistic passband signal, resample the signal in the outport. Change the Step Size
parameter of the Passband output block from -1 (which means that the step size is inherited from
RF Blockset simulation) to 1e-11 .

outport = [model '/Passband output'];
set_param(outport, 'StepSize', '1e-11');
sim(model);

 Passband Signal Representation in Circuit Envelope

8-9

Notes:

• Generating passband output at a higher rate (compared to RF Blockset simulation) requires
resampling the signal's envelope. Current implementation uses a zero-hold resampling method
that introduces "stepping" artifacts. Better interpolation techniques require delaying the output by
several time steps.

• The 'auto' time step option is available on the RF Blockset Outport block (the time step is selected
to resolve the highest output carrier frequency).

• Passband output might slow RF Blockset simulation because of the higher output sampling rate.

bdclose(model)

See Also

Configuration | Amplifier

Related Topics

“Getting Started with RF Modeling” on page 8-2

8 RF Blockset Examples

8-10

Power Ports and Signal Power Measurement in RF Blockset

This example shows how to use power ports and measure the signal power using the spectrum
analyzer.

Power Model

model = 'simrfV2_powerportdefinition_1.slx';
open(model)

In this model, the Simulink signal is interpreted as a |Vrms^2 signal| referred to 1 Ohm. This is
the implicit convention used in the DSP System Toolbox.

When measuring the signal power with the spectrum analyzer, refer the measurement to 1 Ohm. Use
the power option for the ports at the input and output of the system. Notice that the ports
automatically add source and load impedances, and scale the signal to refer it to the specified
impedance. In this way, the available power of the input signal is referred to 50 Ohm. The RF
Blockset amplifier is thus processing a signal with the same power as the Simulink signal.

When probing internal nodes, use the voltage option in the "sensing" port to avoid mismatch in the
circuit. Also, adjust the reference impedance in the spectrum analyzer to 50 Ohm.

Voltage Model

model = 'simrfV2_powerportdefinition_2.slx';
open(model)

 Power Ports and Signal Power Measurement in RF Blockset

8-11

In this model, the Simulink signal is interpreted as a Voltage signal. When measuring the signal
power with the spectrum analyzer, refer the measurement to 50 Ohm. Notice that the two sources
and the "Real-Imag to Complex" of the Power Model are replaced using a single Sine Wave block with
property Output complexity set to "Complex".

In RF Blockset, use the voltage option for the ports at the input and output of the system. Add source
and load impedances to avoid mismatch in the amplifier. Also add a factor of 2 to make sure that the
voltage at the input of the RF Blockset amplifier has the same value as the Simulink signal. The factor
of 2 takes into account the voltage division between the source and input impedances.

Simulate both the models and observe.

See Also

Amplifier | Inport | Spectrum Analyzer

Related Topics

“Getting Started with RF Modeling” on page 8-2 | “Passband Signal Representation in Circuit
Envelope” on page 8-6

8 RF Blockset Examples

8-12

Communications System with Embedded RF Receiver

This example shows how to integrate an RF receiver together with baseband signal processing
algorithms to model an end-to-end communications system.

The example requires Communications Toolbox™.

Part 1: Baseband Communications Link with Integrated RF Receiver Model

The following model includes a baseband signal generator, a simple channel, an RF receiver initially
designed using the RF budget analyzer as described in “Getting Started with RF Modeling” on page
8-2, an analog-to-digital conversion, a demodulation scheme, and a computation block for the symbol
error rate.

model = 'simrfV2_comms_rf_example';
open_system(model);

For this model, blocks from Communications Toolbox and DSP System Toolbox™ are used to perform
baseband signal processing. The nonstandard compliant baseband signal has a rectangular QAM
constellation with raised cosine filtering and the baseband receiver does not include carrier/clock
synchronization. Parameters for the baseband signal generation are defined in the Model
Properties -> Model callbacks PreLoadFcn, which sets these parameters in the MATLAB
workspace when the model is loaded:

• BW = 8 MHz;
• Tstep = 125 ns; % 1/BW
• FrameLength = 128;
• M = 4; % Constellation size 2^M
• Tsymbol = 64 us; % M*FrameLength*Tstep

Sample time for the baseband signal and Step size of the RF Blockset receiver Configuration
block have the same value. This guarantees that the RF simulation bandwidth is consistent with the
sampling rate of the input signal. The RF Blockset Receiver has input and output ports that convert
the Simulink signals into RF domain quantities and scale their power to a 50 Ohm reference
impedance. The input port centers the baseband signal at a specified center frequency of 2.45 GHz,
and the RF IQ Demodulator downconverts the input signal to baseband with a single quadrature
stage.

 Communications System with Embedded RF Receiver

8-13

bdclose(model);

Part 2: Include an Out-of-Band Interfering Blocker Signal

The model simrfV2_comms_rf_interferer shows how to add a high power out-of-band interferer
centered around 2.5 GHz. This blocker affects the RF receiver by driving it into the nonlinear region.
Use the following steps to complete this task.

model = 'simrfV2_comms_rf_interferer';
open_system(model);

Add an 8-PSK Modulator Baseband block source to include a blocking signal with a higher power
level than the transmitter signal. Using the Vector Concatenate block, combine the baseband and
blocker signals. The input signal to the RF receiver is now composed of two complex baseband
signals. It is important that the two baseband sources use the same sample rate to insure equal
simulation bandwidths for each signal (same envelope bandwidth). If the two signals don't have the
same sample time, they need to be resampled before combining. This is the recommended best
practice for simulating blocker signals when they are "far away" from the desired signal in the
frequency spectrum and cannot be included in the same envelope for a particular carrier. To display
the spectral positioning of the two input signals in the Spectrum Analyzer block, the Offset option
has two frequencies specified for the two baseband signals.

The input port of the RF receiver has been modified to include the two carrier (Carrier
frequencies) signals (2.45 GHz and 2.5 GHz). Initially we leave the configuration block to
automatically select the fundamental tones and the harmonic order.

bdclose(model);

Part 3: Add Imperfections to the RF Receiver

The model simrfV2_comms_rf_impairments shows how to add impairments to the RF receiver
that were initially not estimated in the link budget of the RF Budget Analyzer.

model = 'simrfV2_comms_rf_impairments';
open_system(model);

8 RF Blockset Examples

8-14

Under the mask of the RF receiver, modify the RF demodulator to add imperfections that will be
driven by the blocking signal. In the mask of the IQ demodulator change these parameters:

• I/Q gain mismatch = 0.5 dB
• I/Q phase mismatch = 1 degree
• LO to RF isolation = 85 dB
• IIP2 = 45 dB
• Phase noise frequency offset = [1e5 5e5 2e6] Hz
• Phase noise level = [-95 -120 -140] dBc/Hz

Each of these imperfections separately increases the bit error rate. These imperfections cause finite
image rejection and a DC offset that is removed in the baseband domain. As observed, the DC offset
correction requires time to integrate the signal power and remove the DC component. To further
modify the structure of the I/Q demodulator system, you can click on the "Edit System" button. With
this operation you disable the link to the library, inline the value of the parameters, and have the
ability to manually modify the block parameters as well as the block architecture.

bdclose(model);

Part 4: How to Decrease Simulation Time

The model simrfV2_comms_rf_speed shows how to decrease the simulation time of the previous
model described in this example. Follow these steps to speed up the simulation of the model.

model = 'simrfV2_comms_rf_speed';
open_system(model);

 Communications System with Embedded RF Receiver

8-15

In Simulink, select Accelerator mode to speed up the simulation by leveraging automatic C code
generation.

In the RF Blockset section, to speed up simulation reduce the Harmonic order of the Circuit
Envelope configuration block. Uncheck Automatically select fundamental tones and
harmonic order and set the Harmonic order equal to 3. The Total simulation frequencies
is reduced from 61 to 25, equivalent to an approximate 2.5 times speed up. After reducing the
Harmonic order, verify that simulation results do not change.

To further increase simulation speed, use Frequency domain modeling instead of Time domain
modeling for the S-parameters SAW filter block. You need to verify that when changing the “Compare
Time and Frequency Domain Simulation Options for S-parameters” on page 8-40 approach the
simulated transfer function is still correct and that the model uses a sufficiently long Impulse
response duration.

With the above modifications, the simulation is approximately five times faster without significantly
affecting the simulation results.

bdclose(model);
clear model;

Related Topics

“Getting Started with RF Modeling” on page 8-2

8 RF Blockset Examples

8-16

Automatic Sample-Time Interpolation at Input Port

This example shows how to manage models consisting of both digital communication and RF systems
that process signals at different sampling rates. To perform a model simulation where the Nyquist
sampling rate of the digital communication signal is less than the inverse of the RF section time step
an interpolation filter will be employed. The use of this interpolation filter diminishes the introduction
of artificial signal artifacts at the boundaries of the communication and RF systems resulting from the
sampling rate differences.

Part 1: Single signal entering the RF system

The following model includes a Zigbee (802.15) baseband signal feeding a direct conversion RF
receiver. The ZigBee baseband transmitter is built using blocks from Communications Toolbox™ and
DSP System Toolbox™ while the RF receiver is constructed using blocks from the RF Blockset™
Circuit Envelope library.

For the RF Blockset Circuit Envelope solver it is recommended to use a simulation time step that is 4
to 8 times smaller than the reciprocal of the input baseband signal sample time. This provides a
simulation bandwidth that is sufficient for the RF solver to capture artifacts at the edge of the
bandwidth accurately and the physical effects that require additional bandwidth such as spectral
regrowth. In general, using an interpolation factor of 4 to 8 increases the simulation bandwidth
beyond the Nyquist rate of the baseband signal generated in the transmitter.

In this model, the two different signal sample rates are:

• green for the communications baseband signal

• red for the RF circuit envelope signal

model = 'simrfV2_sampletime_example';
open_system(model)
sim(model)

% Hide all scopes (see PostLoadFcn Model Callback for more details):
SpTxScopeConf.Visible = false;
SpTXiScopeConf.Visible = false;
SpRxScopeConf.Visible = false;

 Automatic Sample-Time Interpolation at Input Port

8-17

The Top and Bottom RF receiver systems in the model are identical and consist of Pre-LNA filter,
followed by an LNA, quadrature demodulator, and another amplification stage. All RF components
include typical impairments such as noise, nonlinearity and finite isolation.

open_system([model '/RF Blockset Direct Conversion Top'])

As specified in the Configuration block Mask Parameters dialog box, the simulation is performed with
the input interpolation filter enabled for the top receiver,

8 RF Blockset Examples

8-18

and disabled for the bottom receiver.

 Automatic Sample-Time Interpolation at Input Port

8-19

The top RF receiver is fed with a baseband signal possessing a sample rate 4 times slower than the
reciprocal of the RF simulation step size set in its Configuration block. The RF Inport block
automatically interpolates the input signal at the required RF rate.

The bottom RF receiver is fed with a baseband signal sample rate equaled to the reciprocal of the
step size specified in its RF Configuration block. The bottom RF receiver uses an explicit interpolation
filter highlighted in orange to up-sample the communication baseband signal.

% Show these two scope results:
SpTxScopeConf.Visible = true;
SpTXiScopeConf.Visible = true;

8 RF Blockset Examples

8-20

 Automatic Sample-Time Interpolation at Input Port

8-21

The outputs of both receivers are the same, since both input signals are resampled by interpolation
filters to reduce sample rate transition aliasing effects. In the top receiver, the sample rate transition
is automatically managed by the circuit envelope Inport block. In the bottom receiver, the sample rate
transition is explicitly managed by the addition of the interpolation filter.

% Show this scope result:
SpRxScopeConf.Visible = true;

Using an interpolation filter improves the spectral results of the simulation, but comes at a price: it
introduces a delay. Since an FIR filter is used for the interpolation, the delay corresponds to half the
number of filter coefficients. In this case, the filter has 640 taps and introduces a delay of 320 time
steps at the faster RF sample rate or 80 time steps at the slower baseband communication sample
rate. In case of multiple baseband communication signal inputs, it may be necessary to compensate
for the delay by aligning all signals entering the RF system.

When an input interpolation filter is enabled in the Configuration block Mask Parameters dialog box,
the RF signal delay introduced will be displayed next to the enabling switch.

8 RF Blockset Examples

8-22

By default, RF Blockset automatically inserts an interpolation filter and resamples the input signal.
You might decide to disable the default option and explicitly insert an interpolation filter if you have:

• specific requirements regarding the specifications of the interpolation filter;
• multiple input signals requiring different input ports (case described below);
• Simulink control signals (e.g. applied to VGA, variable phase shifter or switch blocks) that are

intrinsically slower than the RF signal and do not necessitate resampling.

 Automatic Sample-Time Interpolation at Input Port

8-23

Part 2: Multiple signals entering the RF system

The automatic interpolation option discussed above can only support a single RF Inport block. When
using multiple Inport blocks, the user is required to manually insert interpolation filters before these
blocks. The interpolation filters are then adjusted to have all entering communication signals
resampled at the rate specified in the RF Configuration block.

While the RF Blockset Inport block can accept a vector of multiple signals each specified at a
different carrier frequency, these signals must have the same sample rates. The following model
describes two RF systems with multiple inputs centered on different carriers and correctly
resampled. The model is like the one in Part 1 of this example, but also includes a wideband
interfering signal that is generated using blocks from Communications Toolbox and DSP System
Toolbox. The two input signals have the same sample rate and the RF Blockset Configuration block
has a Step size that samples the RF signal 4 times faster than the baseband communications signal.

bdclose(model);
model = 'simrfV2_sampletime_example_interf1';
open_system(model);
sim(model);

8 RF Blockset Examples

8-24

 Automatic Sample-Time Interpolation at Input Port

8-25

The model is like the one described in Part 1 of this example. The interpolation filter is necessary to
avoid aliasing effects due to rate transition.

A more interesting scenario occurs in the following model when the desired and interferer signals
have different sample rates. In this model, the desired signal is explicitly interpolated by the filter
(highlighted in orange) and then combined with the wideband interferer as a vector.

To avoid the aliasing effect, the slower rate of the desired input signal is interpolated and filtered
before combining with the faster rate interfering signal.

bdclose(model);
model = 'simrfV2_sampletime_example_interf2';
open_system(model);
sim(model);

% Hide all scope results (see PostLoadFcn Model Callback for more details):
SpTXComScopeConf.Visible = false;
SpRxSepScopeConf.Visible = false;
SpRxComScopeConf.Visible = false;

8 RF Blockset Examples

8-26

In the top RF receiver, the two signals entering the RF system are centered on different carriers.
Note that the sample rate of the signal entering the top RF system is the same as defined in the RF
Configuration block. In this case, enabling the automatic input interpolation filter in the RF
Configuration block does not introduce any interpolation.

 Automatic Sample-Time Interpolation at Input Port

8-27

SpRxSepScopeConf.Visible = true;

The last scenario discussed occurs when the two signals entering the RF system are placed on
carriers that are relatively close to each other. Since the number of mixing harmonics required for
simulation can be large in strongly nonlinear systems, it is recommended to combine the two signals
onto one carrier when they are close by.

SpTXComScopeConf.Visible = true;

8 RF Blockset Examples

8-28

In the bottom receiver, the RF system is fed with the desired signals combined onto a single carrier
signal. The combined signal is achieved by multiplying the interfering signal with a complex exponent
to shift its operation frequency by 20MHz relative to the frequency of the desired signal. Note that
the bandwidth needed to capture both signals when combined on a single carrier is larger than the
bandwidth of each individual carrier signal. This is the reason for introducing the interpolation filter
highlighted in green before combining the signals.

SpRxComScopeConf.Visible = true;

 Automatic Sample-Time Interpolation at Input Port

8-29

The results of the two RF systems (top and bottom) in the above model show excellent
correspondence. The interferer signal is missing from the spectrum in the top RF system since the
output port behaves as an ideal filter and only selects the real passband signal centered at DC. The
interferer signal is missing from the spectrum in the bottom RF system since the IQ Demodulator
includes a channel select filter. To see the effects of the interferer signal, turn off the filter by
unchecking the 'Add Channel Select filter' checkbox in the IQ Demodulator block Mask Parameter
dialog. The resulting spectrum is

set_param([model '/RF Blockset Direct Conversion Bottom/IQ Demodulator'], ...
 'AddCSFilters', 'off');
sim(model);

% Do not show other scopes and rescale Y axis:
SpTxSepScopeConf.Visible = false;
SpTXComScopeConf.Visible = false;
SpRxSepScopeConf.Visible = false;
SpRxComScopeConf.YLimits = [-103 0];

8 RF Blockset Examples

8-30

bdclose(model);
clear model;

See Also

Amplifier | Configuration

Related Topics

“Power Ports and Signal Power Measurement in RF Blockset” on page 8-11

 Automatic Sample-Time Interpolation at Input Port

8-31

Analysis of Frequency Response of RF System

This example uses a few techniques to calculate the steady-state frequency response for a filter-based
RF system built from RF Blockset™ Circuit Envelope library blocks. The first technique performs
static analysis (harmonic balance) on a circuit comprising of inductors and capacitors. The second
technique does time domain simulation using a similar circuit built with the Filter library block. The
third technique facilitates small-signal analysis to obtain the frequency response of a filtering system
that exhibits nonlinearity at a given operation point. This example helps you validate a circuit
envelope model using a static analysis in the frequency domain, a time domain simulation, and small
signal analysis in cases where the system exhibits non-linearity.

Frequency Domain Analysis
model = 'simrfV2_ac_analysis';
open_system(model);

The system consists of:

• A Continuous Wave source and a series resistor to model a voltage source with internal source
impedance.

• Inductor and Capacitor blocks configured to model a third-order Chebyshev filter with a center
frequency of 2.4 GHz.

• An Outport block configured as a voltage sensor to measure the voltage across a load resistor.
• A Configuration block, which sets up the circuit envelope simulation environment. As the system is

linear, the harmonic balance analysis is done with a single simulation frequency and corresponds
to an AC analysis.

1 Type open_system('simrfV2_ac_analysis') at the Command Window prompt.
2 Double-click the block labeled 'Specify Frequency Values' to provide a vector of frequencies.
3 Double-click the block labeled 'Calculate Frequency Response' to execute a script,

simrfV2_ac_analysis_callback, that analyzes the model at the specified frequencies and
plots the response.

8 RF Blockset Examples

8-32

simrfV2_ac_analysis_callback([model '/Subsystem'], 'OpenFcn');

To configure a model with circuit envelope library blocks for harmonic balance:

• In the Model Configuration parameters dialog box, set the Stop time parameter to zero.
• Use a Continuous Wave block to drive the system.
• Set the Carrier frequencies parameter in the Continuous Wave, Outport blocks, and the

Fundamental Tones parameter in the Configuration block to the same vector of frequencies.

Close the open model

bdclose(model)

Time Domain Simulation

model = 'simrfV2_ac_analysis_tf';
open_system(model)

 Analysis of Frequency Response of RF System

8-33

The system consists of:

• A Random source generator that outputs a continuous random signal.
• A Chebyshev filter constructed using the Filter library block and designed with a center frequency

of 2.4 GHz and a bandwidth of 480 MHz.
• Discrete Transfer Function Estimator block to view the frequency domain output of a time domain

simulation.
• Spectrum Analyzer to view the output.

View the filter designed parameters used in the Filter block mask.

View the implemented filter under the Filter block mask.

open_system([model '/Filter'],'force')

8 RF Blockset Examples

8-34

Simulate the transfer system model.

sim(model)
pause(5)

 Analysis of Frequency Response of RF System

8-35

Compare the outputs of the first and second model.

bdclose(model)

Small Signal Analysis
model = 'simrfV2_ac_analysis_ss';
open_system(model)

The system consists of:

• A Random source generator that outputs a continuous random signal that is subsequently
attenuated to ensure small signal input.

• A constant source added to the random source to determine the non-linear operation point. Both
signals are centered at 2.4 GHz.

8 RF Blockset Examples

8-36

• An RF System comprising two elements; A saw filter constructed using the S-parameter library
block with a center frequency of 2.45 GHz and a bandwidth of 112 MHz and an amplifier with
20dB of available power gain and non-linearity described by a 3rd-order intercept point of 30dBm.

• Discrete Transfer Function Estimator block to view the frequency domain output of a time domain
simulation measured over the 2.4 GHz carrier.

• Spectrum Analyzer to view the output and compare it to saved output data.

Since the transient signal is small while the operation point is determined based on carrier-constant
large signals, it is possible to use the transient small-signal approximation. In this approximation,
non-linear interaction between transient signals is ignored, however the non-linear interaction
between carrier-constant signals and its effect on the small signals is captured accurately. The small
signal analysis is enabled in the advanced tab of the Configuration block mask.

Using small signal analysis, a subset of the full set of carriers used for steady state solution can be
chosen for transient simulation. In this example, only the 2.4 GHz is of interest for transient analysis.
Reducing the number of simulated carriers, accelerates the simulation. In this case, the small signal
simulation is more than 15 times faster than a full non-linear circuit-envelope based simulation.
Comparing the small-signal simulation results with those of a full circuit envelope simulation loaded
from a file, it is evident that the results are practically identical.

sim(model)

 Analysis of Frequency Response of RF System

8-37

Decreasing the operation point power in the constant block from 0.5 Watt down to zero, the system
becomes effectively linear. A comparison between the curves illustrates the effect of the non-linearity
on the transfer function. These effects include a decrease in overall amplitude due to compression
and a widening of the filter profile at the lower-frequency side. The widening can be explained as the
result of the cubic term in the amplifier polynomial response folding the original RF frequency of 2.4
GHz back onto itself, but with a frequency response that is flipped around its central frequency since
2.4 GHz is reached by reflection from -2.4 GHz. Since the Saw filter is centered at 2.45GHz, the
flipped frequency response is centered at 2.35GHz. Summing the linear and cube terms effects yields
a widened profile.

8 RF Blockset Examples

8-38

bdclose(model)

References

1 Ludwig, Reinhold and Pavel Bretchko, RF Circuit Design: Theory and Applications. Prentice-Hall,
2000.

2 Mass A. Stephen, Nonlinear Microwave and RF Circuits. Artech House, 2003.

See Also

“Compare Time and Frequency Domain Simulation Options for S-parameters” on page 8-40

 Analysis of Frequency Response of RF System

8-39

Compare Time and Frequency Domain Simulation Options for
S-parameters

This example shows how to use two different options for modeling S-parameters with the RF
Blockset™ Circuit Envelope library. The Time-domain (rationalfit) technique creates an analytical
rational model that approximates the whole range of the data. This is a preferable technique when a
good fit could be achieved with a small number of poles. When the data has a lot of details or high
level of noise, this model becomes large and slow to simulate.

The frequency-domain technique is based on convolution, where the baseband impulse response
depends on the simulation time step and the carrier frequency.

System Architecture

The system consists of:

• An input envelope signal modeled with Simulink blocks. The input signal is a ramp that goes from
0 to 1 in TF_RAMP_TIME; the initial value of TF_RAMP_TIME is set to 1e-6 s. The carrier
frequency of the signal is TF_FREQ; the initial value of TF_FREQ is set to 2.4e9 Hz.

• Two SAW filters, modeled by two S-parameter blocks using the same data file, sawfilter.s2p.
The block labeled SAW Filter (time domain) has its Modeling options parameter in the
Modeling tab set to Time domain (rationalfit). The block labeled SAW Filter
(frequency domain) has its Modeling options parameter in the Modeling tab set to
Frequency domain and the Automatically estimate impulse response duration is checked.

• A Scope block that displays the outputs of the two S-parameter blocks.

model = 'simrfV2_sparam_t_vs_f';
open_system(model);

8 RF Blockset Examples

8-40

Run Simulation with the Default Settings
1 Type open_system('simrfV2_sparam_t_vs_f') at the Command Window prompt.
2 Select Simulation > Run.

The outputs from both methods are very close to each other. The frequency-domain model (purple
curve) captures the transfer function (steady-state value) a bit better.

scope = [model '/Scope'];
open_system(scope);
set_param(scope, 'YMax','0.45');
set_param(scope, 'YMin','0');
set_param(scope, 'TimeRange',num2str(1.01*TF_END_TIME));
sim(model);

Run the Simulation with the Very Steep Ramp

In the previous simulation, the rise time of the envelope TF_RAMP_TIME = 1e-6 was many orders of
magnitude greater than the period of the carrier signal T = 1/TF_FREQ = 4.1667e-10. In other
words, the envelope was much slower than the carrier. As the ramp time approaches the period of the
carrier, the corresponding time effects are better captured by the time-domain model (yellow curve).

To continue the example:

 Compare Time and Frequency Domain Simulation Options for S-parameters

8-41

1 Type TF_RAMP_TIME = 1e-9; TF_END_TIME = 1e-7; at the Command Window prompt.
2 Select Simulation > Run.

TF_RAMP_TIME = 1e-9;
TF_END_TIME = 1e-7;
set_param(scope, 'TimeRange',num2str(1.01*TF_END_TIME));
sim(model);
open_system(scope);

The result of the frequency-domain simulation can be improved by decreasing the time step of the
simulation and manually setting the impulse duration time.

To continue the example:

1 Type TF_STEP = 5e-10; at the Command Window prompt.
2 Uncheck Automatically estimate impulse response duration in the modeling pane of Saw

filter (frequency domain) block and specify the Impulse Response Duration as 1e-7.
3 Select Simulation > Run.

TF_STEP = 5e-10;
sparam_freq = [model '/SAW Filter (frequency domain)'];

8 RF Blockset Examples

8-42

set_param(sparam_freq, 'AutoImpulseLength', 'off');
set_param(sparam_freq, 'ImpulseLength', '1e-7');
sim(model);
open_system(scope);

Run Simulation with Different Frequency

Rational-function approximation is not exact. To see the approximation error, double-click the "SAW
Filter (time domain)" block. Information about the approximation appears under "Rational fitting
results" in the bottom of the dialog 'Modeling' pane.

open_system([model sprintf('/SAW Filter (time domain)')]);

For more details, select 'Visualization' panel, and click the 'Plot' button.

The rationalfit algorithm (dotted curve) does a very good job for the most of the frequencies.
However, sometimes it does not capture the sharp changes of S-parameter data.

simrfV2_click_dialog_button('Block Parameters: SAW Filter (time domain)', 'PlotButton');

 Compare Time and Frequency Domain Simulation Options for S-parameters

8-43

Conversely, the frequency-domain method exactly reproduces the steady-state behavior at all carrier
frequencies (by definition). Running the simulation for TF_FREQ = 2.54e9 produces drastically
different results between the two S-parameter methods.

To continue the example:

1 Type TF_FREQ = 2.54e9; TF_RAMP_TIME = 1e-6; TF_STEP = 3e-9; TF_END_TIME =
2.5e-6; at the Command Window prompt.

2 Select Simulation > Run.

In this case, the frequency-domain model provides a better approximation of the original data.

TF_STEP = 3e-9;
TF_RAMP_TIME = 1e-6;
TF_FREQ = 2.54e9;
TF_END_TIME = 2.5e-6;
set_param(scope, 'YMax','1e-3');
set_param(scope, 'TimeRange',num2str(1.01*TF_END_TIME));
sim(model);
open_system(scope);

8 RF Blockset Examples

8-44

Run Simulation with Impulse Duration Set to Zero.

There is a special case that could be very helpful in practice. When the "Impulse Response Duration"
of the s-parameters block is set to zero, the history of the input is no longer taken into consideration.
Still, the model captures the transfer function (steady-state value) correctly. This is a fast and reliable
way to model the ideal devices when the transient effects could be ignored.

To continue the example:

1 Specify the Impulse Response Duration of Saw filter (frequency domain) block as 0.
2 Select Simulation > Run.

set_param(sparam_freq, 'ImpulseLength', '0');
sim(model);
open_system(scope);

 Compare Time and Frequency Domain Simulation Options for S-parameters

8-45

Conclusion

In most practical RF systems, time- and frequency-domain techniques give similar answers. The time-
domain method better captures the time-domain effects of the fast-changing envelopes, but relies on
a rationalfit approximation of the original data. The frequency-domain method is sensitive to the
simulation time step; this option is recommended when the time-domain model does not provide a
good fit.

close gcf;
bdclose(model);
clear model scope;

See Also

S-Parameters | Configuration | Inport | Outport

Related Topics

“Analysis of Frequency Response of RF System” on page 8-32 | “Transmission Lines, Delay-Based and
Lumped Models” on page 8-47

8 RF Blockset Examples

8-46

Transmission Lines, Delay-Based and Lumped Models

This example shows how to simulate delay-based and lumped-element Transmission Line using blocks
in the RF Blockset™ Circuit Envelope library. The example is sequenced to examine circuit envelope
and passband differences, delay-based lossy transmission line sectioning, and lumped element
implementation of delay.

System Architecture for Lossless Delay-Based Transmission Line

In this section, two RF Blockset™ models, simrf_xline_pb and simrf_xline_ce, illustrate
lossless delay-based transmission line effects and the computational benefit of circuit envelope
techniques.

model_pb = 'simrf_xline_pb';
model_ce = 'simrf_xline_ce';
load_system(model_ce)
open_system(model_pb)

The model, simrf_xline_pb, represents a passband signal as:

The input is a pulse-modulated sinusoidal passband signal. For this particular case, I(t) equals zero,
and Q(t) is the pulse modulation. The carrier frequencies are set to zero in the RF Blockset Inport and
Outport blocks.

open_system([model_pb '/Input Signal']);

 Transmission Lines, Delay-Based and Lumped Models

8-47

The circuit envelope model, simrf_xline_ce, represents an envelope signal as:

Again, I(t) equals zero, and Q(t) is the pulse modulation, but the carrier signal is not specified as part
of the input signal. To model the carrier, the Carrier Frequencies parameter is set to in the RF
Blockset Inport and Outport blocks.

open_system([model_ce '/Input Signal']);

Removal of the explicit sinusoidal carrier in the circuit-envelope model allows the simulation to
reduce time-steps relative to the passband model.

Running the Lossless Delay-Based Transmission Line

1 Type open_system('simrf_xline_pb') or open_system('simrf_xline_ce') at the
Command Window prompt.

2 Select Simulation > Run.

After simulating, the transmission delay is observable in a plot of input and output signals.

open_system([model_ce '/Circuit Envelope']);
sim(model_ce);

8 RF Blockset Examples

8-48

The carriers in modulated waveforms appear in passband signals, but only the modulation envelopes
appear in circuit-envelope signals. Passband signals can be reconstructed from circuit envelope
signals as:

However, reconstruction of the passband signal this way requires additional time steps for the carrier.

sim(model_pb);
hline = plot(SPB_Data(:,1),SPB_Data(:,2),SCE_Data(:,1),SCE_Data(:,2),'--');
legend('Passband', 'Circuit Envelope')
title('Input Passband and Circuit Envelope Signals')
xlabel('Time')
ylabel('Voltage')
ylim([-1.1 1.1])

 Transmission Lines, Delay-Based and Lumped Models

8-49

haxis = get(hline(1),'Parent');
plot(haxis,SPB_Data(:,1),SPB_Data(:,3),SCE_Data(:,1),SCE_Data(:,3),'--')
legend('Passband', 'Circuit Envelope')
title('Output of Passband and Circuit Envelope Signals')
xlabel('Time')
ylabel('Voltage')
ylim([-.55 .55])

8 RF Blockset Examples

8-50

Partitioning Delay-Based Lossy Transmission Lines

A conventional method for modeling distributed lossy transmission lines employs N two-port
segments in cascade. Each segment consists of an ideal lossless delay line and resistance, where the
segment delay equals the total line delay divided by N and the segment resistance equals the total
line resistance divided by N. As the number of segments increases, the lumped model will more
accurately represent the distributed system. This methodology requires a compromise between
simulation time and model accuracy for increasing N. In RF Blockset, the Number of segments, the
Resistance per unit length and the Line length are specified as dialog box parameters in
the transmission line block.

model_seg = 'simrf_xline_seg';
open_system(model_seg)

 Transmission Lines, Delay-Based and Lumped Models

8-51

System Architecture for Lossy Delay-Based Transmission Line

The lossy delay-based transmission line model, simrf_xline_seg, consists of two parallel arms
excited by a RF Blockset sinusoidal source. The top arm employs a single segment transmission line,
while the bottom arm uses a line consisting of 3 segments. The source and load resistances are not
equal to the characteristic impedance of the transmission line. These differences affect the shape of
the output response. For example, the output response will be overdamped when the source and load
resistances are less than the characteristic impedance.

open_system([model_seg '/Output Voltage']);
sim(model_seg);

8 RF Blockset Examples

8-52

Increasing the number of line segments in the bottom arm from three to four and comparing
responses show that three segments suffice for this configuration.

close_system([model_seg '/Output Voltage']);
ST_Data3 = ST_Data;
set_param([model_seg '/Transmission (3 Segments)'],'NumSegments','4')
sim(model_seg);
plot(haxis, ST_Data3(:,1), ST_Data3(:,4), ST_Data(:,1), ST_Data(:,4), '--')
legend('3 Segments', '4 Segments')
title('Delay-Based Lossy Transmission Line Output Signals')
xlabel('Time')
ylabel('Voltage')

 Transmission Lines, Delay-Based and Lumped Models

8-53

System Architecture for Lumped Element Transmission Line

Differences between the lumped element and delay-based transmission lines are now examined.
Consider the model simrf_xline_ll, where the dialog box parameter Model_type is Delay-
based and lossy for the top arm and Lumped parameter L-section for the other two arms.
The Inductance per unit length and Capacitance per unit length parameters values for
the L-section lines are similar to a 50 coaxial cable. Basic first order approximations for these lines
are and

model_ll = 'simrf_xline_ll';
open_system(model_ll)

8 RF Blockset Examples

8-54

Running the Lumped Element Transmission Line

1 Type open_system('simrf_xline_ll') at the Command Window prompt.
2 Select Simulation > Run.

The following graph shows how the number of lumped element segments affects the output. Speed
and accuracy must be balanced when using the lumped-element transmission line block.

open_system([model_ll '/Circuit Envelope Output Voltage 200MHz Carrier']);
sim(model_ll);

 Transmission Lines, Delay-Based and Lumped Models

8-55

Cleaning Up

Close the model and remove workspace variables.

close(get(haxis,'Parent'))
clear haxis hline;
bdclose({model_pb model_ce model_seg model_ll});
clear SCE_Data SPB_Data ST_Data ST_Data3 SLL_Data;
clear model_pb model_ce model_seg model_ll;

References

Sussman-Fort and Hantgan, SPICE Implementation of Lossy Transmission Line and Schottky Diode
Models. IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 1, January 1988

True Kenneth M, Data Transmission Lines and Their Characteristics. Application Note 806, April
1992

See Also

“Compare Time and Frequency Domain Simulation Options for S-parameters” on page 8-40

8 RF Blockset Examples

8-56

Validating IP2/IP3 Using Complex Signals

This example shows how to use the RF Blockset™ Circuit Envelope library to run a two-tone
experiment that measures the second- and third-order intercept points of an amplifier. The model
computes the intercept points of the amplifier from the modulated signal power measured on each
carrier, verifying the behavior of the RF Blockset system. These values are confirmed using the RF
Budget Analyzer app and a measurement testbench.

System Architecture

The system consists of:

• Two complex voltage sources connected in series. The first voltage source is modeled with
Simulink® blocks, and the second with blocks from the RF Blockset circuit envelope library. In the
Simulink Source subsystem, two series Sine Wave blocks model in-phase and quadrature
components of the first tone. An Inport block assigns the Simulink signal to the carrier fc1. In the
RF Blockset Source subsystem, two series Sinusoid blocks model in-phase and quadrature voltage
signals that modulate the carrier fc2.

• A resistor modeling the voltage source impedance.
• An amplifier with input impedance, output impedance specified in the Main tab; output IP2, and

output IP3 specified in the Nonlinearity tab.
• An Outport block that probes the output voltage of the amplifier across a shunt Resistor block. The

ordering of the output signals is determined by the ordering of the carriers specified in the
Outport block dialog.

• A subsystem to compute running rms power levels at the input, IP2 and IP3 frequencies.
• A subsystem to compute IP2 and IP3 intercept points [1].

The example model defines variables for block parameters using a callback function. To access model
callbacks, select MODELING > Model Settings > Model Properties and click the Callbacks tab in
the Model Properties window.

 Validating IP2/IP3 Using Complex Signals

8-57

Running the Example

1 Type open_system('simrfV2_carriers') at the Command Window prompt.
2 Select Simulation > Run.

Output power and amplifier output intercept points are displayed on the right side of the model. The
Calculate Power subsystem computes the power in dBm of each intermodulation product using a
running root-mean-square (RMS) average.

Modeling Nonlinear RF Blockset Components

To model nonlinearities in the RF Blockset circuit envelope environment:

• Place an Amplifier or Mixer block in your model.
• Specify parameters that generate nonlinearities, such as IP2 and IP3, taking care to specify the

convention or specify a polynomial directly in the Nonlinearity tab of the block dialog.
• Specify any additional carrier frequencies for simulation in the Configuration block. In this

example, the Configuration block specifies a total of twenty five frequencies : fc1 and fc2, as the
Fundamental Tones of the input signals; a Harmonic Order of 3 for each tone resulting in a
complete set of second, third, fourth-order intermodulation products(second and third-order
harmonic products included), and a partial set of fifth and sixth-order intermodulation products.

In order to calculate the power level of each envelope, the measured voltage signals are scaled with
the inverse of the square root of the characteristic impedance. An additional scaling of 1/sqrt(2) in
the Calculate Power subsystem normalizes the complex-valued output signal.

Validate Using Measurement Testbench

The same measurements can be performed using the RF Budget Analyzer app to automatically
generate the model and testbench.

• Open the RF Budget Analyzer app and specify an amplifier.
• Define its IP3 (IP2 cannot be specified at this time).
• Generate the measurement testbench.

8 RF Blockset Examples

8-58

• Open Device Under Test to reveal the amplifier. Specify the IP2 value.
• Disable the noise to make an accurate measurement for IP2 and IP3. (Use the RF Measurement

Unit dialog box).
• Run the simulation and measure IP3.

• Change the quantity to be verified to IP2 and rerun the simulation.

 Validating IP2/IP3 Using Complex Signals

8-59

If you look under the mask of the testbench, you will find the logic to measure IP2 and IP3. This
methodology is very similar to what is described in the initial model.

Reference

1 Kundert, Ken. "Accurate and Rapid Measurement of IP2 and IP3." The Designers Guide
Community, Version 1b, May 22, 2002.

See Also
IIP3 Testbench | IIP2 Testbench

Related Examples
• “Two-Tone Envelope Analysis Using Real Signals” on page 8-61

8 RF Blockset Examples

8-60

Two-Tone Envelope Analysis Using Real Signals

This example shows how to use the RF Blockset™ Circuit Envelope library to test intermodulation
distortion of an amplifier using two-carrier envelope analysis.

System Architecture

The system consists of:

• A Simulink® sinusoidal input with frequency (f1-f2)/2, and an Inport that assigns the input
modulation to the carrier (f1+f2)/2. This formulation is equivalent to the sum of two sinusoids
with frequency f1 and f2, according to the sum-product formula for cosines:

• An amplifier with specified 0 dB linear gain and -20 dB OIP3. For an input signal , the amplifier
computes the output according to the polynomial

• Two Outport blocks that probe the input and output voltages (across shunt resistors) at the carrier
frequency.

 Two-Tone Envelope Analysis Using Real Signals

8-61

• A spectrum analyzer

The example model defines variables for block parameters using a callback function. To access model
callbacks, select MODELING > Model Settings > Model Properties and click the Callbacks tab in
the Model Properties window.

Running the Example

1 Type open_system('simrfV2_power_imd') at the Command Window prompt.
2 Select Simulation > Run.

8 RF Blockset Examples

8-62

 Two-Tone Envelope Analysis Using Real Signals

8-63

The resulting output power spectrum, labeled 'Output Power', shows third-order intermodulation
distortion. The Display block shows the power of the bandpass waveform, which is half of power of
the envelope waveform.

The spectrum analyzer is set to probe for the Output Power. On comparing values, you will see that
the spectrum analyzer matches the output power spectrum.

The input drives the nonlinear amplifier into compression, so the linear component of the output is
attenuated. To simulate the amplifier in a linear region:

• Specify Inf for the IP3 parameter of the Amplifier block located in the Nonlinearity tab of the
dialog, or

• Reduce the power of the input signal by decreasing the value of the Amplitude parameter of the
Sine Wave block.

Performing Two-Tone Analysis Using Circuit Envelope Simulation

This example takes advantage of the properties of real signals--namely, the sum-product equivalence
of sinusoids. To perform the same experiment on a different RF system:

1 Choose f1 and f2, the frequencies of the test tones.
2 Use a Simulink Sine source and an Inport block to model modulation with frequency (f1-f2)/2

on a carrier with frequency (f1+f2)/2. Alternatively, you can use a Sinusoid block from the RF
Blockset Circuit Envelope library to specify both a modulation and a carrier simultaneously.

3 Specify (f1+f2)/2 as one of your carrier frequencies in the Configuration block dialog.

8 RF Blockset Examples

8-64

4 Use an Outport block to probe the distorted signal.

References

Cripps, Steve C. RF Power Amplifiers for Wireless Communications. Artech House, Inc., 2006.

See Also

Amplifier | Configuration | Inport

Related Topics

“Validating IP2/IP3 Using Complex Signals” on page 8-57

 Two-Tone Envelope Analysis Using Real Signals

8-65

Measuring Image Rejection Ratio in Receivers

This example shows how to use the RF Blockset™ Circuit Envelope library to calculate the image
rejection ratio (IRR) for high-side-injection in Weaver and Hartley receivers. The Weaver receiver
shows the effect of phase offset on IRR, and the Hartley receiver shows a similar effect for resistor
variation.

model1 = 'simrfV2_hartley';
open_system(model1);

System Architecture

The RF system consists of:

• An Inport block that assigns multiplexed outputs of the RF and Image, by using Simulink®
Constant blocks, to the carriers fc_RF and fc_IM respectively. Real and imaginary values of the
Constant blocks are matched to in-phase and quadrature carrier components.

• First stage mixers that mix the input signal with a local oscillator modeled by a Continuous Wave
block with frequency fc_LO. The LO frequency is the average of the RF and image frequencies, so
both signals are mixed down to the same frequency, fc_IF. The LO phase is shifted 90 degrees in
one mixer relative to the other.

• The second stage of the Hartley uses a frequency independent RC-CR network to produce an
additional 90 degree phase shift between the two signal paths, while the Weaver employs two
additional mixers for channel selection.

• A Signal Combiner block that sums the voltage signals at its two inputs to yield the RF signal. If
the Signal Combiner block is used to perform subtraction, the image can be obtained instead of
the RF signal at its output. For low-side-injection, the Signal Combiner block needs to perform
subtraction.

• The values of the in-phase and quadrature components of the RF and image signals are chosen to
reduce the number of IRR calculations and facilitate reuse of the Image Rejection Calculator.

8 RF Blockset Examples

8-66

Simulating the Hartley Receiver

1 Type open_system('simrfV2_hartley') at the Command Window prompt.
2 Double-click 'Specify Resistance Range' and specify a set of resistance values for the highlighted

resistor.
3 Double-click 'Calculate IRR values' to execute a script, simrfV2_hartley_callback, that

simulates the model once for each specified resistance value and generates a plot.

The sensitivity of the architecture to the component variation is shown by simulating the system
multiple times, varying the resistance of the highlighted Resistor block at each iteration. When the
highlighted resistor has a resistance of 1 Ohm, the images sum to zero in the Signal Combiner block
and the IRR is minus infinity.

evalc('simrfV2_hartley_callback');

bdclose(model1);
model2 = 'simrfV2_weaver';
open_system(model2);

 Measuring Image Rejection Ratio in Receivers

8-67

Simulating the Weaver Receiver

1 Type open_system('simrfV2_weaver') at the Command Window prompt.
2 Double-click 'Specify Phase Offset Values' and specify a set of phase offset values.
3 Double-click 'Calculate IRR values' to execute a script, simrfV2_weaver_callback, that

simulates the model once for each specified offset and generates a plot.

The sensitivity of the architecture to LO phase offset is shown by simulating the system multiple
times, varying the phase offset of the highlighted Phase Shift block at each iteration. When the phase
offset of the highlighted Phase Shift block is zero, the images sum to zero in the Signal Combiner
block and the IRR is minus infinity.

evalc('simrfV2_weaver_callback');

8 RF Blockset Examples

8-68

bdclose(model2)

See Also

Mixer

Related Topics

“Measuring Image Rejection Ratio in Receivers” on page 8-66

 Measuring Image Rejection Ratio in Receivers

8-69

Executable Specification of a Direct Conversion Receiver

This example shows how to use the RF Blockset™ Circuit Envelope library to simulate the sensitivity
performance of a direct conversion architecture with the following RF impairments:

• Component noise
• LO-RF isolation
• Interference from blocker signals
• Local oscillator phase offset
• ADC dynamic range
• Component mismatch

The RF portion of the model includes the explicit specification of gain, noise figure, IP2 and IP3, input
\output impedance, and LO phase offset. The transmitter side of the RF interface includes modulation
scheme, signal power, and blocker power. The carrier frequencies for the transmitted waveforms are
specified in the Inport block. The baseband side includes the number of symbols and full scale range
of the ADC.

System Architecture:

This system model illustrates the design and simulation of a Direct Conversion ISM Band Receiver.
The model is comprised of blocks from RF Blockset, Communications Toolbox™, DSP System
Toolbox™, and Simulink® libraries. The primary subsystems in the model include a digital
transmitter, an RF receiver, an ADC, a DC offset correction, and a digital receiver. Blocks and plotted
signals are color coded:

• RF Blockset: Light Blue
• Communications Toolbox: Green
• DSP System Toolbox: Grey
• Simulink: White

model = 'simrfV2_direct_conv';
open_system(model)

8 RF Blockset Examples

8-70

The digital transmitter consists of two 8-PSK modulated waveforms, a target waveform and an
interfering waveform. The waveforms are scaled by 1/sqrt(2) for passband-waveform power
measurement and spectrum visualization.

open_system([model '/Digital Transmitter'])

open_system([model '/Digital Transmitter/RF'])

The direct-conversion RF receiver has a frequency conversion stage and two gain stages. Resistors
model input and output impedances of the RF system as well as the isolation between the LO and RF
ports of the mixers. Each of the blocks captures RF impairments relevant to this design. Each of the
nonlinear blocks is specified by noise figure. The LNA non-linearity is specified by IP3, and the
nonlinearity in the IF amplifiers are specified by both IP2 and IP3. The mixer nonlinearity is specified
by IP2. A single LO and a phase shift block provide the cosine and sine terms to the I and Q branches,

 Executable Specification of a Direct Conversion Receiver

8-71

respectively. To model a thermal noise floor in the RF Blockset environment, the Temperature
parameter in the Configuration block specifies a noise temperature of 290.0 K.

open_system([model '/SimRF Direct Conversion RX'])

The ADC uses an N-bit quantizer followed by a saturation block to model the full-scale range. Hence,
the ADC properly models the system quantization noise floor.

open_system([model '/ADC'], 'Force')

The DC offset cancellation block employs an IIR algorithm for estimating offset. This DC offset
correction is enable or disable during simulation using the manual switch that follows the offset
block.

The digital receiver applies a matched filter to the received waveform followed by an AGC function,
and demodulates the waveform for symbol-error-rate calculation.

open_system([model '/Digital Receiver'])

8 RF Blockset Examples

8-72

Running the Example

Running the example simulates a design that meets an uncoded 0.5% SER specification.
Modifications to the signal power levels and component specifications in the receiver and ADC have a
direct impact on the receiver performance. The manual switch in the design enables the user switch
the offset correction subsystem in and out to visualize the DC offset effect associated with RF-LO
isolation.

sim(model,'stoptime','1e-3');

 Executable Specification of a Direct Conversion Receiver

8-73

bdclose(model)
clear model

8 RF Blockset Examples

8-74

Frequency Response of RF Transmit/Receive Duplex Filter

This example shows how to use blocks from the RF Blockset™ Circuit Envelope library to simulate a
transmit/receive duplex filter and calculate frequency response curves from a broadband white-noise
input. Blocks from the DSP System Toolbox™ libraries generate the input signal, process the output
signal, and display the results.

System Architecture

The system consists of:

• A DSP System Toolbox Random Source block, which generates broadband white noise.
• Inport and Resistor blocks from the RF Blockset circuit envelope library, which model a controlled

voltage source with internal impedance.
• An input matching network, which maximizes the power of the signal received by the filters.
• Duplexed transmit and receive filters, composed of circuit envelope blocks from the RF Blockset

Elements sublibrary. The center frequencies of the filters are 1.954 GHz and 1.848 GHz, and the
bandwidths are 27 MHz and 18 MHz, respectively. The receive filter is shown in the figure below.

• Two Outports acting as voltage sensors, measuring the voltage across two load resistors.
• The Frequency Response Calculator subsystem, which computes the voltage transfer functions.
• A DSP System Toolbox Spectrum Analyzer, which displays the frequency response curves.

Block parameters in this example are specified by variables stored in the model workspace. To alter
the model workspace, select Modeling > Model Explorer and click on the Model Workspace node
for this model in the Model Hierarchy pane.

 Frequency Response of RF Transmit/Receive Duplex Filter

8-75

Running the Example

1 Type open_system('simrfV2_duplexer') at the Command Window prompt.
2 Select Simulation > Run.

The Spectrum Analyzer displays the envelope voltage transfer functions of the two filters. Duplexing
is evident in the frequency response of the two filters. The frequency values along the -axis are
relative to the RF carrier. To compute the absolute frequencies, add the value of the Carrier
frequencies parameter of the Inport block to the frequencies shown.

Calculating a Transfer Function Using a Broadband White Noise Source

The Frequency Response Calculator subsystem processes the Simulink® signals converted from the
RF Blockset environment at the Outport blocks. Within this subsystem, two Compute Transfer
Function subsystems correlate the outputs to the input signal.

8 RF Blockset Examples

8-76

The Compute Transfer Function subsystems operate on discrete signals. To configure the RF Blockset
circuit envelope environment for discrete-time simulation:

• In the Configuration block dialog, select Auto from the Solver drop-down menu, and specify the
Step size parameter. Within the RF Blockset circuit envelope environment, the local solver
overrides the solver options specified in the Configuration Parameters dialog box.

• Use a continuous source, or use a discrete source with a sample time equal to the value specified
in the Configuration block. In this example, the Sample mode parameter of the Random Source
block is Continuous.

See Also

Inductor | Capacitor | Z (Impedance)

Related Topics

“Architectural Design of a Low IF Receiver System” on page 8-178

 Frequency Response of RF Transmit/Receive Duplex Filter

8-77

Digital Predistortion to Compensate for Power Amplifier
Nonlinearities

This example shows how to use digital predistortion (DPD) in a transmitter to offset the effects of
nonlinearities in a power amplifier. This example use power amplifier models that were obtained from
“Power Amplifier Characterization” (Communications Toolbox) example to simulate two cases. In the
first simulation, the RF transmitter sends two tones. In the second simulation, the RF transmitter
sends a 5G-like OFDM waveform with 100 MHz bandwidth.

DPD with Two Sinusoidal Test Signals

Open the Simulink RF Blockset model: System-level model PA + DPD with two tones.

The model includes a two-tone signal generator that is used for testing the output-referred third-
order intercept point of the system. The model includes upconversion to RF frequency using an I-Q
modulator, the PA model, a coupler to sniff the output of the PA, and an S-parameter block
representing the antenna loading effect. The receiver chain performs downconversion to low
intermediate frequency. Notice that the simulation bandwidth of this system is 107.52 MHz.

The model can be simulated without DPD when the toggle switch is in the up position.

model = 'simrfV2_powamp_dpd';
open_system(model)
sim(model)

8 RF Blockset Examples

8-78

The manual switch is toggled to enable the DPD algorithm. When toggled, the TOI (third-order
intercept point) is improved significantly. Inspect the distortion measurement in the Spectrum
Analyzer to validate these results and see how the power of the harmonics is reduced thanks to the
DPD linearization.

Before the two-tone signal enters the DPD block or the power amplifier, it goes through an FIR
interpolator, the same FIR interpolator used during PA characterization. This is necessary because
the power amplifier model was obtained for the sample rate after interpolation, not the original
sample rate of the two-tone signal, and oversampling the signal is required for modeling high order
nonlinearities introduced by the power amplifier.

The desired amplitude gain of the DPD Coefficient Estimator is set based on the expected gain of the
power amplifier (obtained during PA characterization), because in addition to linearization, the
overall goal is to make the combined gain from the DPD input to the power amplifier output as close
to the expected gain as possible. To estimate the DPD coefficients correctly, the input signals to the
DPD Coefficient Estimator block, PA In and PA Out, must be aligned in the time domain. This is

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

8-79

verified by the Find Delay block which shows that the delay introduced by the RF system is 0.
Moreover, PA In and PA Out must be accurate baseband representations of the power amplifier input
signal and output signal, i.e. no extra gain or phase shift. Otherwise, the DPD Coefficient Estimator
block would not observe the power amplifier correctly and would not produce the right DPD
coefficients. This is done by ensuring that both the upconversion and downconversion steps have a
gain of 1 and the loss and phase shift due to the coupler are properly compensated for before the
feedback signal reaches PA Out.

The purpose of the scale factor in front of the FIR interpolator is to help utilize the linearized power
amplifier effectively. Even with DPD enabled, two undesirable scenarios may occur. The two-tone
signal may be very small with respect to the input range of the linearized system, hence under-
utilizing the amplification capability of the linearized system. Or the two-tone signal may be so large
that the power amplifier model operates outside the range observed during PA characterization and
therefore the power amplifier model may not be an accurate model of the physical device. We use the
following heuristic approach to set the scale factor.

Assuming that the DPD block perfectly linearizes the power amplifier to achieve the expected
amplitude gain, then the maximum input amplitude allowed by the DPD block should be the maximum
power amplifier output amplitude observed during PA characterization divided by the expected
amplitude gain. The scale factor before the DPD block should then be the maximum input amplitude
allowed by the DPD block divided by the maximum amplitude of the interpolated signal observed
during PA characterization.

The system model has a block that calculates the maximum normalized PA input amplitude. If it is
equal to 1, it means that the baseband signal entering the RF system has a maximum amplitude equal
to the maximum PA input amplitude observed during PA characterization. Therefore, if the maximum
normalized PA input amplitude is smaller than 1, the scale factor set by the heuristic approach above
may be increased. If the maximum normalized PA input amplitude is greater than 1, the scale factor
should be reduced.

set_param([model '/Manual Switch'], 'action', '1')
sim(model)

8 RF Blockset Examples

8-80

By changing the degree and the memory depth defined in the DPD Coefficient Estimator block, you
can find the most suitable tradeoff between performance and implementation cost.

close_system(model,0)
close all; clear

DPD with a 5G-like OFDM Waveform

Open the Simulink RF Blockset model: System-level model PA + DPD with a 5G-like OFDM waveform.

The structure of this Simulink model is the same as that of the previous Simulink model. The signal
being amplified is now a 5G-like OFDM waveform, rather than a two-tone signal. Oversampling is
done at the OFDM modulator within the baseband signal generation block. The spectrum analyzer
measures ACPR instead of TOI and we add a subsystem to measure the EVM and MER of the
amplified OFDM waveform.

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

8-81

Without DPD linearization, the system achieves an average Modulation Error Ratio of 24.4 dB, as
seen from the constellation plot measurement.

model = 'simrfV2_powamp_dpd_comms';
open_system(model)
sim(model)

8 RF Blockset Examples

8-82

The manual switch is toggled to enable the DPD algorithm. When toggled, the average MER is
improved significantly.

set_param([model '/Manual Switch'], 'action', '1')
sim(model)

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

8-83

8 RF Blockset Examples

8-84

close_system(model,0)
close all; clear

Selected Bibliography

1 Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. "A
Generalized Memory Polynomial Model for Digital Predistortion of Power Amplifiers." IEEE®
Transactions on Signal Processing. Vol. 54, No. 10, October 2006, pp. 3852–3860.

2 Gan, Li, and Emad Abd-Elrady. "Digital Predistortion of Memory Polynomial Systems Using Direct
and Indirect Learning Architectures." In Proceedings of the Eleventh IASTED International
Conference on Signal and Image Processing (SIP) (F. Cruz-Roldán and N. B. Smith, eds.), No.
654-802. Calgary, AB: ACTA Press, 2009.

See Also
Power Amplifier

More About
• “Power Amplifier Characterization” on page 7-92

 Digital Predistortion to Compensate for Power Amplifier Nonlinearities

8-85

• “Two-Tone Envelope Analysis Using Real Signals” on page 8-61
• “Power in Simulink Sources and Signals” on page 8-108
• “Power Ports and Signal Power Measurement in RF Blockset” on page 8-11

8 RF Blockset Examples

8-86

Radar System Modeling

This example shows how to set up a radar system simulation consisting of a transmitter, a channel
with a target, and a receiver. For the Aerospace Defense industry, this is an important multi-discipline
problem. RF Blockset™ is used for modeling the RF transmitter and receiver sections.

System Architecture

The system consists of:

• A radar pulse generator, which outputs a chirp with a power of 1 mW at a 2% duty cycle (On time
= 2 ms, period = 100 ms).

• An RF transmitter section consisting of a filter and an Amplifier implemented using RF Blockset
Circuit Envelope library blocks. Since the filter is a linear device and the amplifier is a non-linear
device, they are split into two separate independent subsystems. This separation allows the use of
different simulation frequency sets in each subsystem. This separation also permits a trade-off
between faster simulation speed and the loss of inter-stage loading effects available in a cascaded
chain.

• An ideal antenna element with specified boresight gain operating at 2.1 GHz.

• A moving target implementation that reflects the entire incident signal from its cross-sectional
surface. The target surface is perpendicular to the incident radar pulse direction of travel.

• An RF Receiver built using the RF Blockset Circuit Envelope library. The direct conversion
structure is implemented in the receiver together with LNA and matching networks. The LNA is
describe in a touchstone file and the local oscillator includes a phase noise model. Similar to the
RF transmitter section, the receiver is split into independent linear and non-linear subsystems.
The matching networks, LNA and filter are in the linear section, while the Mixer and final stage
amplifiers are in the non-linear section.

The Receive Module in this example serves two purposes. First, the module contains a matched filter
detector for target detection. Second, the module serves as a testbench where a theoretical filter
implementation is realized via Simulink blocks. The output of each of these filters is compared and
their differences plotted.

 Radar System Modeling

8-87

Running Example Using Default Settings

Set the target cross section, target speed, and relative distance to the target by double-clicking the
Target icon. At sufficiently large distances or if the target cross section is too small, the return signal
cannot be detected because of the noise.

To start the example simulation:

1 Select Simulation > Run

8 RF Blockset Examples

8-88

The scope output shows the results for a 0.5 second simulation, while received pulses indicate the
presence of the target.

Effect of Antenna Gain/Direction

Open the 'Ideal Antenna' block and change the transmit gain to 10 dB. The target will no longer
receive the signal from the main beam of the transmit antenna.

To run the example under this scenario:

1 Select Simulation > Run

The effect of the change in antenna gain is observed in the scope. Notice that the pulses are now
buried in the noise, rendering the object electromagnetically invisible.

Phase Noise Enabled On Receiver LO

Open the Receiver Front-End subsystem, and use the manual switch to include the phase noise model
for the Local Oscillator.

 Radar System Modeling

8-89

Effect of Phase Noise

1 Double click on the 'Ideal Antenna' block and change the transmit gain back to 40 dB.
2 Select Simulation > Run

8 RF Blockset Examples

8-90

The effect of the phase noise from the Local oscillator is observed in the varying strength of the
detected pulses. This varying pulse strength can have an impact on the probability of detection and
will result in the target being detected only at certain times.

See Also

Related Examples
• “Modeling RF Front End in Radar System Simulation” (Phased Array System Toolbox)
• “Radar Tracking System” on page 8-132

 Radar System Modeling

8-91

RF Receiver Modeling for LTE Reception

This example demonstrates how to model and test an LTE RF receiver using LTE Toolbox™ and RF
Blockset™.

Model Description

An LTE waveform is generated, filtered, transmitted through a propagation channel and fed into an
RF Blockset receiver model. The RF model can be assembled using commercially available parts.
EVM measurements are performed on the RF receiver output.

This example is implemented using MATLAB® and Simulink®, which interact at runtime. The
functional partition is as follows:

The measurement testbench is implemented with a MATLAB script using an RF System object as the
device under test (DUT). LTE frames are streamed between testbench and DUT.

Generate LTE Waveform

In this section we generate the LTE waveform using the LTE Toolbox. We use the reference
measurement channel (RMC) R.6 as defined in TS 36.101 [1]. This RMC specifies a 25 resource
elements (REs) bandwidth, equivalent to 5 MHz. A 64 QAM modulation is used. All REs are allocated.
Additionally, OCNG noise is enabled in unused REs.

8 RF Blockset Examples

8-92

Only one frame is generated. This frame will then be repeated a number of times to perform the EVM
measurements.

% Configuration TS 36.101 25 REs (5 MHz), 64-QAM, full allocation
rmc = lteRMCDL('R.6');
rmc.OCNGPDSCHEnable = 'On';

% Create eNodeB transmission with fixed PDSCH data
rng(2) % Fixed random seed (arbitrary)
data = randi([0 1],sum(rmc.PDSCH.TrBlkSizes),1);

% Generate 1 frame, to be repeated to simulate a total of N frames
[tx,~,info] = lteRMCDLTool(rmc,data); % 1 frame

% Calculate the sampling period and the length of the frame
SamplePeriod = 1/info.SamplingRate;
FrameLength = length(tx);

Initialize Simulation Components

This section initializes some of the simulation components:

• Number of frames: this is the number of times the generated frame is repeated
• Preallocate result vectors

% Number of simulation frames N >= 1
N = 3;

% Preallocate vectors for results for N-1 frames
% Note: EVM is not measured in the first frame to avoid transient effects
evmpeak = zeros(N,1);
evmrms = zeros(N,1);

Design RF Receiver

The initial design of the RF receiver is done using the RF Budget Analyzer app. The receiver
consists of a LNA, a direct conversion demodulator, and a final amplifier. All stages include noise and
non-linearity.

load rfb.mat

Type show(rfb) to display the initial design of the RF receiver in the RF Budget Analyzer app.

 RF Receiver Modeling for LTE Reception

8-93

Create RF model for simulation

From the RF budget object you can automatically create a model that can be used for circuit envelope
simulation.

rfx = rfsystem(rfb);
rfx.SampleTime = SamplePeriod;
open_system(rfx)

Extend the model of the RF receiver

You can modify the model created in the previous section to include additional RF impairments and
components. You can modify the created RF Blocket model as long as you do not change the input /
output ports. This section loads a modified Simulink model that performs the following functions:

• Channel model: includes free space path loss

8 RF Blockset Examples

8-94

• RF receiver: includes direct conversion demodulator
• ADC and DC offset cancellation

You can open and inspect the modified model.

model = 'simrfV2_lte_receiver';
open_system(model)

Simulate Frames

This section simulates the specified number of frames. The RF system object simulates the Circuit
Envelope model in Accelerator mode to decrease run time. After processing the first frame with
the Simulink model, its state is preserved and automatically passed to the successive frame.

The output of the Simulink model is stored in the variable rx, which is available in the workspace.
Any delays introduced to this signal are removed after performing synchronization. The EVM is
measured on the resulting waveform.

load rfs.mat
EVMalg.EnablePlotting = 'Off';
cec.PilotAverage = 'TestEVM';

for n = 1:N
 [I,Q] = rfs(tx);
 rx = complex(I,Q);

 % Synchronize to received waveform
 if n == 1
 Offset = lteDLFrameOffset(rmc,squeeze(rx),'TestEVM');
 end

 % Compute and display EVM measurements
 evmmeas = simrfV2_lte_receiver_evm_cal(rmc,cec,squeeze(rx),EVMalg);
 evmpeak(n) = evmmeas.Peak;
 evmrms(n) = evmmeas.RMS;
end

Low edge EVM, subframe 0: 2.884%
High edge EVM, subframe 0: 2.885%
Low edge EVM, subframe 1: 2.845%

 RF Receiver Modeling for LTE Reception

8-95

High edge EVM, subframe 1: 2.838%
Low edge EVM, subframe 2: 2.800%
High edge EVM, subframe 2: 2.804%
Low edge EVM, subframe 3: 2.764%
High edge EVM, subframe 3: 2.764%
Low edge EVM, subframe 4: 2.773%
High edge EVM, subframe 4: 2.765%
Low edge EVM, subframe 6: 2.845%
High edge EVM, subframe 6: 2.838%
Low edge EVM, subframe 7: 2.832%
High edge EVM, subframe 7: 2.837%
Low edge EVM, subframe 8: 2.778%
High edge EVM, subframe 8: 2.772%
Low edge EVM, subframe 9: 2.883%
High edge EVM, subframe 9: 2.868%
Averaged low edge EVM, frame 0: 2.822%
Averaged high edge EVM, frame 0: 2.818%
Averaged EVM frame 0: 2.822%
Averaged overall EVM: 2.822%
Low edge EVM, subframe 0: 3.026%
High edge EVM, subframe 0: 3.018%
Low edge EVM, subframe 1: 2.944%
High edge EVM, subframe 1: 2.935%
Low edge EVM, subframe 2: 2.772%
High edge EVM, subframe 2: 2.760%
Low edge EVM, subframe 3: 2.795%
High edge EVM, subframe 3: 2.791%
Low edge EVM, subframe 4: 2.907%
High edge EVM, subframe 4: 2.902%
Low edge EVM, subframe 6: 2.833%
High edge EVM, subframe 6: 2.815%
Low edge EVM, subframe 7: 2.792%
High edge EVM, subframe 7: 2.794%
Low edge EVM, subframe 8: 2.786%
High edge EVM, subframe 8: 2.787%
Low edge EVM, subframe 9: 2.806%
High edge EVM, subframe 9: 2.807%
Averaged low edge EVM, frame 0: 2.849%
Averaged high edge EVM, frame 0: 2.844%
Averaged EVM frame 0: 2.849%
Averaged overall EVM: 2.849%
Low edge EVM, subframe 0: 2.953%
High edge EVM, subframe 0: 2.961%
Low edge EVM, subframe 1: 2.899%
High edge EVM, subframe 1: 2.898%
Low edge EVM, subframe 2: 2.776%
High edge EVM, subframe 2: 2.780%
Low edge EVM, subframe 3: 2.840%
High edge EVM, subframe 3: 2.858%
Low edge EVM, subframe 4: 2.853%
High edge EVM, subframe 4: 2.859%
Low edge EVM, subframe 6: 2.896%
High edge EVM, subframe 6: 2.878%
Low edge EVM, subframe 7: 2.804%
High edge EVM, subframe 7: 2.801%
Low edge EVM, subframe 8: 2.777%
High edge EVM, subframe 8: 2.778%
Low edge EVM, subframe 9: 2.904%

8 RF Blockset Examples

8-96

High edge EVM, subframe 9: 2.896%
Averaged low edge EVM, frame 0: 2.855%
Averaged high edge EVM, frame 0: 2.856%
Averaged EVM frame 0: 2.856%
Averaged overall EVM: 2.856%

Visualize Measured EVM

This section plots the measured peak and RMS EVM for each simulated frame.

figure
plot((1:N),100*evmpeak,'o-')
title('EVM peak %')
xlabel('Number of frames')

figure
plot((1:N),100*evmrms,'o-')
title('EVM RMS %')
xlabel('Number of frames')

 RF Receiver Modeling for LTE Reception

8-97

Cleaning Up

Close the Simulink model and remove the generated files.

release(rfs)
close_system(rfs,0)

Appendix

This example uses the following helper function:

• simrfV2_lte_receiver_evm_cal.m

Selected Bibliography

1 3GPP TS 36.101 "User Equipment (UE) radio transmission and reception"

See Also
Amplifier | VGA | Configuration | Inport | Outport

Related Examples
• “Carrier to Interference Performance of Weaver Receiver” on page 7-48

8 RF Blockset Examples

8-98

Create Custom RF Blockset Models

This example shows how to write your own RF Blockset™ Circuit Envelope model in Simscape®
language for complex baseband simulation. An RF Circuit Envelope complex baseband signal resides
on a carrier with specified frequency. This baseband signal will modulate with other signals when the
system is nonlinear. The example nonlinearity is implemented with a Simscape Component block and
includes a Simscape ssc-file to describe the nonlinear voltage polynomial.

System Architecture

The system consists of:

• An input voltage signal, linearly increasing in time and generated with a Simulink Ramp block.
• An RF Blockset Inport block to specify the Carrier frequencies (Input_Freq) of the input

voltage signal. This setup allows observation of the system nonlinear behavior for different input
settings.

• A custom nonlinear voltage amplifier (polynomial voltage controlled voltage source), modeled with
a Simscape Component block. The device equations are written in passband (time) domain and
assume instantaneous voltage V(t) and current I(t) values. These equations are interpreted by RF
Blockset envelope solver in both passband and baseband domains (zero and nonzero carrier
frequencies).

• An Outport block to specify output Carrier frequencies (Output_Freqs). The output carrier
frequencies are higher order harmonics (integer multiples) of the Inport frequency resulting from
the amplifier nonlinearity.

• A Scope to display the magnitudes of the output voltages at Output_Freqs frequencies as
specified in the Outport block.

• Load resistors and ground nodes needed to make the circuit electrically sound. By construction,
the resistor values do not affect the output voltage.

• A Configuration block to control the system carrier frequencies required for accurate simulation
and other simulation properties.

model = 'simrfV2_custom_polynomial';
open_system(model);

 Create Custom RF Blockset Models

8-99

Examine Model

Double-click the "Custom Nonlinearity" block or type open_system([model '/Custom
Nonlinearity']) in the command window to open the Custom Nonlinearity block mask.

The file simrfV2_custom_vcvs.ssc describes the custom device. View the source code by clicking
the block mask "Source code" link or typing edit simrfV2_custom_vcvs at the command prompt.

Copy the file simrfV2_custom_vcvs.ssc to a directory where you have write permission to rename
and modify the file. Click the block mask "Choose source" button to replace the current device
implementation with yours. Use the mask Help button for additional information.

The above method uses the Simscape Component block from the Simscape Utilities library to avoid
the library build process. For more information, see “Custom Components”.

Run Model Using Default Settings

For this example, default input and output frequencies are set to 0 and the result is a passband
simulation. The input voltage magnitude is linearly increasing in time, Vin(t) = t, and the custom
nonlinearity relationship Vout(Vin) is shown in the scope.

The model is simulated after entering the following into the command window

sim(model);

8 RF Blockset Examples

8-100

Observe the response produced by the cubic polynomial specified in the 'Custom Nonlinearity' model.
The saturated output voltage occurs at time 0.7 seconds and corresponds to the input voltage of 0.7
V.

Run Model with Non-zero Input Carrier

Set the input carrier frequency to 1 GHz and the output frequencies to the first five harmonics of the
input. For non-zero carrier input frequency, RF Blockset interprets the input as a complex baseband
signal. This complex baseband signal only has a in-phase part specified.

Type the following at the Command Prompt:

Input_Freq = 1e9;
Output_Freqs = (1:5)*Input_Freq;
sim(model);

 Create Custom RF Blockset Models

8-101

Since the coefficients c0 and c2 are zero, the output has only odd harmonics (1 GHz, 3 GHz and 5
GHz) until the output voltage reaches saturation. Other harmonics are introduced for large values of
input voltage because of saturation effects.

The relationship between the output curves, polynomial coefficients and IP2/IP3/P1db coefficients is
well-studied in the literature [1,2].

Conclusion

An RF Blockset model can be written as a time-domain electrical model in the Simscape language.
The model equation can include many types of characteristics, such as derivatives and history (not
shown in this example). As with any other model description language, the modeler is responsible for
the validity of the model:

• The equations are consistent.
• The equations cannot be degenerate, unstable, or discontinuous. Avoid negative resistances, large

nonlinearities and sharp transitions.
• The model does not produce convergence errors during the simulation.

Bibliography

1 Kundert, Ken. "Accurate and Rapid Measurement of IP2 and IP3." The Designers Guide
Community, Version 1b, May 22, 2002.

8 RF Blockset Examples

8-102

2 Chen, Jesse. "Modeling RF systems." The Designers Guide Community, Version 1, 6 March 2005.

bdclose(model)

See Also
Configuration | Inport | Outport

Related Examples
• “Getting Started with RF Modeling” on page 8-2

 Create Custom RF Blockset Models

8-103

Multiple Realizations of Cascaded Filters

This model shows three different ways to use RF Blockset™ Equivalent Baseband library blocks and
RF Toolbox™ objects to implement filters.

Example Model

Example model of multiple realizations of cascaded filters:

The first method creates a filter using transmission line blocks from the Transmission Lines
sublibrary and a LC Bandpass Filter block from the Ladder Filters sublibrary.

The second method creates a filter using three General Circuit Element blocks and three RF circuit
objects.

The third method creates a filter using a General Circuit Element block and an RF circuit object,
which represents a cascade of three RF circuit objects.

Simulation Results

The spectrum scope shows the frequency responses for the three filter implementations from 70 MHz
(-5.0 MHz) to 80 MHz (5.0 MHz).

8 RF Blockset Examples

8-104

See Also

LC Bandpass Pi | Transmission Line (Equivalent Baseband)

Related Topic

“Cascaded RF Systems” on page 8-106

 Multiple Realizations of Cascaded Filters

8-105

Cascaded RF Systems

This model shows how to use blocks from the RF Blockset™ Equivalent Baseband library to build
cascaded RF systems.

Example Model

Fig. 1 Example model of cascaded RF systems:

Simulation Results

In the first three systems, an amplifier with S-parameters taken from the default.s2p data file is
cascaded with different types of transmission lines. The fourth system represents the amplifier itself.

The following figure shows the equivalent baseband frequency response of four RF systems ranging
from 1.85 GHz (-250 MHz) to 2.35 GHz (250 MHz).

Fig. 2 Frequency response:

8 RF Blockset Examples

8-106

To see the frequency response centered at another RF frequency, change the Center frequency
parameter in the Input Port block.

See Also
Equivalent Baseband Transmission Line | LC Bandpass Pi

More About
• “Multiple Realizations of Cascaded Filters” on page 8-104

 Cascaded RF Systems

8-107

Power in Simulink Sources and Signals

This example shows how to use the Input Port and Output Port blocks of the RF Blockset™ Equivalent
Baseband library to convert between dimensionless Simulink® signals and equivalent-baseband
signals.

In general, signals in Simulink are dimensionless, so their amplitudes do not correspond to a
particular voltage or power. However, in an RF system, power is a quantity of interest. When you use
blocks from the RF Blockset Equivalent Baseband library in a Simulink model, you must specify how
the software interprets the Simulink signals that exist outside the boundaries of the Input Port and
Output Port blocks. RF Blockset Equivalent Baseband software provides two options to interpret the
Simulink signal: power wave or voltage. The amplitude of a source in Simulink determines the signal
power level and affects the signal power and power spectrum.

All the models used in this example interpret the Simulink signal as a power wave with dimensions of
. This means for an RF system, the source signal generated by regular Simulink blocks is treated

as the incident power wave to the RF system, and the RF output signal is the transmitted power wave
of the RF system. If you choose to interpret the Simulink signal as a voltage, you need to modify the
models by considering the impedance effects when you calculate the powers. For more details, see
“Convert to and from Simulink Signals” on page A-22.

White Noise Source

This part of the example shows how to create a complex baseband-equivalent White Noise Source.
This type of source is useful, for example, as a stimulus for visualizing the frequency response of an
RF system. Use a Random Source block from the DSP System Toolbox™ Sources sublibrary to create
this source. In the Random Source block dialog box, set the Complexity parameter to Complex and
in the Variance parameter enter the desired noise power in watts using the expression
power_in_watts.

8 RF Blockset Examples

8-108

matlab:rfb_power_examples_white_noise;

 Power in Simulink Sources and Signals

8-109

To calculate a signal power in dBm, use an RMS block (from the DSP System Toolbox Statistics
sublibrary), followed by a dB Conversion block (from the DSP System Toolbox Math Functions/Math
Operations sublibrary). In the dB Conversion block dialog box, set Convert to parameter to dBm ,
Input Signal parameter to Amplitude , and Load resistance (ohms) parameter to 1 .

To display the power spectrum of a signal, use the Spectrum Analyzer block (from the RF Blockset
Circuit Envelope Utilities sublibrary). To show the Spectrum Settings, in the Spectrum Analyzer
menu, select View > Spectrum Settings or use the far left button in the toolbar. Two-sided
spectrum is checked by default in the trace options. This is the desired frequency range because a
complex baseband-equivalent representation translates the carrier frequency to zero hertz. The real-
world frequencies above and below the carrier (i.e. higher and lower sidebands) are represented as
positive and negative frequencies, respectively. A few of the Spectrum Settings options (Type,
Window, Units, Averaging method, Averages) have been changed from their default.

8 RF Blockset Examples

8-110

In addition, note that the selected Spectrum Scope Window Type can affect how the power is
distributed among the channels closest to the actual frequency. For example, if a pure sine wave falls
between two channels, you may need to sum the power in one or two channels either side of the
actual frequency to determine the exact total power.

Complex Sine Source

The next model, of a Complex Sine Wave, shows how to use power to set the amplitude of a complex
sine wave source block for an RF system. Complex sine wave sources are often used in baseband-
equivalent Simulink models. These sources have the following time-domain output:

signal(t) = amplitude * (cos(2*pi*f*t+phi)+j*sin(2*pi*f*t+phi))

The mean square power of the output, signal, is amplitude^2.

By contrast, the time-domain output of a real sine wave source is:

signal2(t) = amplitude * sin(2*pi*f*t+phi)

where the mean square power of signal2 is amplitude^2/2, half that of a complex sine wave with
the same amplitude.

Use the Sine Wave block to create a complex sine source. In the block dialog box, set the Output
complexity parameter to Complex and the Amplitude parameter to sqrt(power_in_watts). By
default, the Spectrum Analyzer displays power spectral density normalized to the unit sampling
frequency in units of dBm/Hertz. For this section, the Spectrum Scope displays the tone as a positive
frequency (upper side band).

 Power in Simulink Sources and Signals

8-111

matlab:rfb_power_examples_cis_wave;

8 RF Blockset Examples

8-112

Two-Tone Input to Idealized Baseband Nonlinear Amplifier

The third model, of a Two-Tone Input to an Idealized Baseband Nonlinear Amplifier, shows how the
Amplifier block in the RF Blockset Idealized Baseband library affects the signal. In the Amplifier block
dialog box set the IIP3 (dBm) parameter to 20 dBm. In the Sine Wave block dialog box, set
Amplitude parameter to sqrt(10^((power_in_dBm - 30)/10)). Setting power_in_dBm = -10
in the model workspace results in -10 dBm per tone. Note that we must use a Matrix Sum block with
the Sum along parameter set to "Rows" after the source block to sum the two-channel output of the
source. Without the Row Sum, a two-channel signal would be created, all blocks downstream would
have two independent channels, and no mixing would occur.

 Power in Simulink Sources and Signals

8-113

matlab:rfb_power_examples_two_tone_math_amp;

The Spectrum Scope displays the power level in each intermodulation tone. The power level of each
is:

-10dBm - 2*(20dBm - -10dBm) = -70dBm.

Two-Tone Input to Equivalent Baseband Nonlinear Amplifier

Like the third model, the fourth model, of a Two-Tone Input to an Equivalent Baseband Nonlinear
Amplifier, shows how an Amplifier block affects the signal. However, this time we use the S-
Parameters Amplifier block from the Equivalent Baseband library of RF Blockset. Unlike the Idealized
Baseband blocks, the Equivalent Baseband blocks allow you to set the center frequency and
impedances. Thus, if you want to model an RF system at real RF frequencies, the loading and
reflection effects, we recommend these physical blocks.

In this model, we set several parameters to Z0:

• Source impedance parameter of the Input Port block dialog box
• Reference impedance parameter of the S-Parameters Amplifier block dialog box
• Load impedance parameter of the Output Port block dialog box

In the Input Port block, set the Center frequency (Hz) parameter to 2e9 (2 GHz). The baseband
frequencies of the two-tone complex Simulink signal are 200 kHz and 300 kHz. Thus, in the RF
system (the Equivalent Baseband blocks connected between the Input Port and Output Port blocks),
the real RF two-tone frequencies are 2.0002 GHz and 2.0003 GHz. By default, the Spectrum Scope
displays in baseband. To display the desired tones at 2.0002 GHz and 2.0003 GHz (-10 dBm each) and
the intermodulation tones at 2.0001 GHz and 2.0004 GHz (-70 dBm each), set the Frequency display

8 RF Blockset Examples

8-114

matlab:rfb_power_examples_two_tone_physical_amp;
matlab:rfb_power_examples_two_tone_physical_amp;

offset: parameter in the "Axis Properties" tab to the value of the Center frequency, in this case it is
2e9 (2 GHz).

 Power in Simulink Sources and Signals

8-115

Displaying Power Spectrum Within Cascade of RF Blockset Equivalent Baseband Blocks

The Output Port block lets you create a link budget plot for multi-block cascades. This feature allows
you to visualize the characteristics of the cascade non-intrusively. Therefore, it is not usually
necessary to tap a cascade of RF Blockset Equivalent Baseband blocks. However, it is sometimes
useful to do so, for example, to see the modulated spectrum at an intermediate point. The final model
of a Tap Cascade of Equivalent Baseband Blocks in RF Blockset, achieves this with a subsystem that
approximately models a real-world directional coupler. As with its real-world counterpart, the tapping
is intrusive in that it presents a load impedance to the downstream part of the cascade and it drives
the upstream part with a source impedance.

Double click on the subsystem "Pseudo 30 dB Directional Coupler" to open it and see how the model
works. The Output Port and Input Port blocks correspond to the input and output impedance of the
mainline of a real-world directional coupler, respectively. However, the phase behavior of a real-world
directional coupler is not modeled here.

8 RF Blockset Examples

8-116

matlab:rfb_power_examples_tap_cascade;

 Power in Simulink Sources and Signals

8-117

The first Spectrum Scope shows the intermodulation tones after one amplifier. Note that the power is
30 dB down because of the characteristics of the "Pseudo 30 dB Directional Coupler" subsystem. You
could calibrate this out with a gain block, or even modify the subsystem to model a 0 dB-loss "active"
directional coupler. The second Spectrum Scope shows an increased level of intermodulation tones
after a cascade of two non-linear amplifiers. The second Spectrum Scope shows an increased level of
intermodulation tones after a cascade of two non-linear amplifiers.

See Also
Input Port | Output Port

8 RF Blockset Examples

8-118

Related Examples
• “Power Ports and Signal Power Measurement in RF Blockset” on page 8-11

 Power in Simulink Sources and Signals

8-119

Effect of Nonlinear Amplifier on 16-QAM Modulation

This model shows the nonlinear effect of an RF Blockset™ Equivalent Baseband amplifier on a 16-
QAM modulated signal.

1 Open the model and select Run to simulate the amplifier nonlinear effect on a 16-QAM
modulated signal.

2 Compare the spectrums of transmitted and received signals, and observe the spectrum regrowth
at the received signal. This regrowth is due to the nonlinearity of the amplifier.

3 Compare the constellations of transmitted and received signals, and observe the signal distortion
at the received signal. This distortion is due to the nonlinearity of the amplifier.

8 RF Blockset Examples

8-120

To view the nonlinear effect, double-click the Slider Gain block and change the value of the gain while
the model is running.

See Also
General Amplifier | Input Port | Output Port

 Effect of Nonlinear Amplifier on 16-QAM Modulation

8-121

Related Examples
• “User-Defined Nonlinear Amplifier Model” on page 8-138
• “Radar Tracking System” on page 8-132

8 RF Blockset Examples

8-122

Executable Specification for System Design

This example shows how to use the Model-Based Design methodology to overcome the challenge of
exchanging specifications, design information, and verification models between multiple design teams
working on a single project. The example uses a simple project: an executable specification that
encapsulates information from all teams. The example includes information on how to use Signal
Processing Toolbox™, DSP System Toolbox™, Communications Toolbox™, RF Toolbox™, and RF
Blockset™ in a multi-domain design.

Figure 1: Bridging the Jargon Gap between RF and System Engineers

Model-Based Design

Model-Based Design uses a system-level model at the center of the development process. Before
partitioning the system-level model among various design teams, the initial system model, developed
by the system engineer, is validated against requirements and standards. With a validated error-free
executable specification, design and implementation go smoothly. As the design progresses,
verification can include co-simulation and testing with hardware-in-the-loop.

 Executable Specification for System Design

8-123

Figure 2: Model-Based Design -- A system-level model is at the center of the development process

Rather than talking about all the elements in the development flow, this example focuses on how
Model-Based Design aids your engineering teams. The idea is to enable the System Engineer to
initially create an executable specification in the form of a Simulink model that can be distributed to
design teams. A team, such as the RF team, will devise a subsystem, extract a verification model and
import it into the RF Toolbox. The RF team then returns the solution to the System Engineer, who
reevaluates the overall performance of the system with the impairments from the RF subsystem. The
design teams can go back and forth, iterating to find an optimal solution as the design proceeds.
Perhaps the RF section can use a more efficient or less costly device if the signal processing
algorithms are altered. Or, perhaps a small increase in fixed-point wordlength can free up some of the
implementation loss budgeted, and enable a lower cost RF component to be used. The opportunities
for cross-domain optimization are enhanced by this Model-Based design methodology.

Baseline Model: Communications Toolbox™ with No RF Modeling

open('rfb_receiver_0.slx')

8 RF Blockset Examples

8-124

The model rfb_receiver_0.slx shows the kind of Communication System Toolbox model that inspired
the creation of the RF Blockset Equivalent Baseband library. Note that this is a simple model for
illustrative purposes. Communications Toolbox includes more complex models of WCDMA, 802.11,
DVB-S2, etc. However, the concepts presented can be applied to more complex models as well.

The simple wireless communication system consists of a message source, QAM modulator, root raised
cosine filter and an AWGN channel. The model is an executable specification, and is used to validate
the specification against requirements and acceptance criteria, "At a BER of 1e-3, the Eb/No must be
no greater than 1dB above the theoretical bound for 16QAM."

To validate the spec, you can use a previously saved BERTool session file rfb_receiver_0.ber. To
find this file, type the following command at the MATLAB prompt

which rfb_receiver_0.ber

Open the BERTool using the MATLAB command bertool. From the File==>Open Session... dialog
box, navigate to the saved session rfb_receiver_0.ber. Now click on the Monte Carlo tab, and
then click on the Run button. A figure like the one below is generated:

 Executable Specification for System Design

8-125

Figure 3: BER versus Eb/No plot without RF impairments

The Eb/No for a given BER value is a little higher than the theoretical bound because of
implementation losses. (In the present case, the main loss is due to the finite length of the root raised
cosine filters.) But the degradation is within acceptance criteria.

Adding RF Specifications to the Baseline Model

open('rfb_receiver_1.slx')

8 RF Blockset Examples

8-126

Let's elaborate the baseline model and see how it changes with additional refinement using RF
Blockset components. The first step is to replace the AWGN block with a path loss block (shown in the
preceding figure in cyan); this will lower the signal level close to the end of range value. The path loss
(in dB) required to bring the unit power (1W) down to a given Eb/No (also in dB) at the receiver input
is:

path_loss = 10*log10(k*T_ref*B*M) + EbNo + NF

where k is Boltzmann's constant (~1.38e-23 J/K), T_ref is the IEEE® standard noise reference
temperature (290K), B is the noise bandwidth (~50 MHz in this case), and NF is the receiver noise
figure in dB.

Next, the cyan-colored RF receiver subsystem and AGC Blocks are included. The AGC Block is a
consequence of using realistic signal levels required by the demodulator.

The RF Receiver Subsystem Examined

open('rfb_receiver_1.slx')
open_system('rfb_receiver_1/RF Receiver')

 Executable Specification for System Design

8-127

Now examine the RF Receiver subsystem, which is a cascaded model of a super heterodyne receiver.
The receiver uses blocks from the RF Blockset Equivalent Baseband library. The Simulink signal
enters the RF domain through a gateway "Input Port" block. Notice that the connectors after the
gateway are different. The standard Simulink arrows have been replaced with RF connection lines.
This is to remind us that RF signals are bidirectional. The receiver is a cascade of components each
represented as a 2-port network: a filter, a LNA, a mixer, and an IF strip. The Output Port, in this
case, is not only the gateway back to Simulink but also represents an ideal quadrature down
conversion mixer. Here is a framework or architecture for a receiver that is not yet designed. An
executable specification for the RF engineer has been created. Each stage of the RF subsystem
includes a budget for the overall gain, noise and nonlinearities, as shown in the following figure.

Figure 4: Specification of Amplifier Block Parameters

As an example of budgeting, consider the front end filter in the above figure. The S-parameters are
specified at a single frequency point using the first element of the gainVec array that was entered into
the base workspace using the PostLoadFcn* under the Callbacks tab in the Model Properties panel.
Each element of the array refers to a stage, so the index 1 refers to the first stage. Values for OIP3,
on the Nonlinearity data tab, and for Noise Figure, on the Noise data tab, are similarly specified.

8 RF Blockset Examples

8-128

Figure 5: Specification of Complex Baseband-Equivalent Simulation Parameters

Now open the Input Port block. This port contains parameters that apply to the overall RF subsystem.
A narrowband modeling approach is used to capture the in-band effects that impact downstream
signal processing blocks. The range of frequencies is specified through the Center frequency
parameter, the Sample time parameter (which is 1/Bandwidth), and the Finite impulse response
filter length parameter (which is the length of the impulse response filters that are used in modeling
RF components). A longer length time-domain filter will give finer frequency-domain resolution within
the specified bandwidth. To model mismatch at the input of the first component, source impedance is
also specified here. Notice the "Add noise" checkbox. To include noise in the simulation, you must
select this "Add noise" checkbox.

 Executable Specification for System Design

8-129

Figure 6: Noise Modeling with the RF Blockset Equivalent Baseband library

The AWGN block models overall noise as a signal-to-noise ratio. By contrast, blocks from the RF
Blockset Equivalent Baseband library model noise by adding the noise contribution of each block
individually. For each block, the noise is modeled using an appropriate formulation determined by the
set of noise parameters supplied for that block. Once the noise for each block is calculated, the
overall system noise model is developed. This overall model includes the position of each block in the
cascade (i.e., includes the gain of the subsequent stages).

8 RF Blockset Examples

8-130

Figure 7: BER versus Eb/No plot with RF impairments

Plots of BER versus Eb/No comparing the theoretical, Baseline and Baseline with RF impairments
models are given in Figure 7. This is a simple illustration of the convenience afforded by the Model-
Based Design methodology. At this point in the process, an executable specification has been
developed. This specification will be used by teams to design their subsystems. In the case of the RF
subsystem, the abstract RF blocks will be replaced by discrete components. As each RF block is
realized, its effect on the system's design criteria can be assessed.

bdclose('rfb_receiver_0');
bdclose('rfb_receiver_1');

See Also

S-Parameters Amplifier

Related Topics

“Effect of Nonlinear Amplifier on 16-QAM Modulation” on page 8-120

 Executable Specification for System Design

8-131

Radar Tracking System

This model shows how to simulate a key multi-discipline design problem from the Aerospace Defense
industry sector.

Structure of the Example

This example contains subsystems that model the essential features of a radar system. The model is
typical of a radar system that is used for target position and velocity detection. The example includes
a radar pulse generator, an RF Transmitter subsystem, a Simulink representation of a moving target,
an RF Receiver and a Receive Module (Rx Module).

Radar Pulse Generator

The radar Pulse Generator creates a swept frequency signal (chirp signal) that has a 10 percent duty
cycle. The subsystem is implemented by using Simulink® blocks and a signal from the MATLAB
workspace that represents a chirp signal.

8 RF Blockset Examples

8-132

RF Transmitter Subsystem

This Subsystem is implemented with both core Simulink blocks as well as blocks from the RF Blockset
Equivalent Baseband library. The RF Blockset subsystem represents a traveling wave tube amplifier.
An ideal antenna is implemented via a Simulink gain block. Within the subsystem, there are DSP
System Toolbox blocks used for calculating the power level of the baseband signal.

Target

The Target is implemented using theoretical implementations of a moving target that fully reflects all
of the incident signal off of its cross-sectional surface, which is perpendicular to the direction of
travel of the incident radar pulses.

RF Receiver

The RF Receiver is implemented using the RF Blockset Equivalent Baseband library. The RF receiver
is a super heterodyne receiver. The LNA is a matched amplifier. For broadband impedance matching,
see the example of RF Toolbox: “Design Broadband Matching Networks for Amplifier”. The LNA is
represented by a Touchstone® data file with noise data. The name of the datafile is samplebjt.s2p.
Following the amplifier are behavioral models for a bandpass filter, mixer and a high gain, high noise
amplifier.

 Radar Tracking System

8-133

Rx Module

The Rx Module in this example serves two purposes. First, the module contains a matched filter
detector for target detection. Also, this module serves as a testbench where a theoretical filter
implementation is realized via Simulink blocks, the output of each of these filters is compared, and
the difference is plotted.

Exploring the Example

You can set the target cross section, target speed, and relative distance to the target by double-
clicking the Target icon and specifying the corresponding parameters. At sufficiently large distances,
the return signal cannot be detected within the noise. Similarly, the return signal cannot be detected
in the noise if the target cross section is too small.

Results and Displays

After simulation, open four time-domain signal graphs of interest for examination.

The first graph, "RadarPulse", displays the time-domain representation of a chirp signal with a 10%
duty cycle.

8 RF Blockset Examples

8-134

The second graph, "Out - Filtering in Time", displays the magnitude and phase of the filtered return
signal with noise.

The third graph, "Out - Filtering in Frequency", displays the real and imaginary response of the
filtered return signal with noise through an ideal filter implementation.

 Radar Tracking System

8-135

The fourth graph, "Diff", displays the difference between the results obtained in calculating the
results for graphs two and three.

The following blocks display numerical results:

The Tx Amplitude (dBW) block displays the power transmitted in dBW.

The Rx Amplitude (dBW) block displays the target return power in dBW.

8 RF Blockset Examples

8-136

See Also

“Radar System Modeling” on page 8-87 | “Executable Specification for System Design” on page 8-123
| S-Parameters Amplifier | General Mixer

 Radar Tracking System

8-137

User-Defined Nonlinear Amplifier Model

This example shows how to:

• Generate user-defined custom models by creating an RF Toolbox™ object in the MATLAB®
workspace and importing it into an Equivalent Baseband amplifier block.

• Create a nonlinear amplifier with an adjustable Pin-Pout curve.
• Simulate intermodulation products in a two-tone test model.

In the example, the Vin-Vout relationship for the amplifier is a simple polynomial. The example uses
this voltage relationship to generate a Pin-Pout curve that is incorporated into the amplifier model.
Although the example uses a specific polynomial function, the same approach can be used to create
arbitrary functions of power out and phase versus power in and frequency. Indeed, it can be used to
set any of the writable properties of a component, such as S-parameters or noise properties.

Define the Voltage-Out Versus Voltage-In Relationship

Use MATLAB commands to create a vector of polynomial coefficients that define the desired Vin-Vout
relationship. A MATLAB convention is to store nth order polynomial coefficients in a row vector of
length n+1 with the nth power in the first element and the zeroth power (constant) in the last (n+1
th) element. The power series here is for illustration, and can easily be altered. You may recognize
the values as the first twelve terms of the polynomial series expansion of the hyperbolic tangent
function.

TanhSeries = [-1382/155925 0 62/2835 0 -17/315 0 2/15 0 -1/3 0 1 0];

Next choose a range for the independent variable, Vin, and define a vector of input voltage values
over this range. The low end (1 mV here) should be sufficiently low that the linear term dominates
Vout. The high end should be chosen such that Vout just reaches its local maximum value. The
resulting Vout will be extrapolated for all Vin greater than 1.23. Next compute the vector of output
voltage values, Vout, using the power series.

Vin = linspace(0.001,1.23,100); % volts
Vout = polyval(TanhSeries, Vin); % volts

Create a Nonlinear Amplifier and Generate the Pin-Pout Curve

Create an RF Toolbox amplifier object with the default property values. Then, generate the Pin-Pout
data (in watts) for the amplifier by dividing the square of the input and output voltage vectors by the
reference impedance of the amplifier. Use the Pin-Pout data to specify the nonlinearity of the
amplifier object. For this example, the Pin-Pout curve is defined for one frequency point (2.1 GHz) and
used (by extrapolation) at all frequency points. See the RF Toolbox documentation for information on
how to create a component with separately defined curves for any number of frequency points.

amp = rfckt.amplifier;
amp.NonlinearData.Freq = 2.1e9; % Hz
Zref = 50; % ohm
amp.NonlinearData.Pin = {(Vin.^2)./Zref}; % watts
amp.NonlinearData.Pout = {(Vout.^2)./Zref}; % watts

In this example, we define the phase change to be zero for all Pin and all frequencies, but RF Toolbox
lets you set it to be a function of Pin and frequency.

amp.NonlinearData.Phase = {zeros(size(Vin))};

8 RF Blockset Examples

8-138

Make the Small-Signal Gain Consistent with the Power Gain Slope at Low Power

Define the S21 parameter of the amplifier at the frequency point for which you specified the power
data. The S21 network parameter must be consistent with the gain slope at the low power end of the
Pin-Pout curve at that frequency point. If these values are inconsistent, RF Blockset software will
attempt to reconcile the data and issue a warning that is has done so. To ensure consistency, define
the S21 parameter to be the linear term of the power series that defines the Vin-Vout relationship.
The linear term is the next-to-last element in the vector. Plot the Pin-Pout curve.

amp.NetworkData.Freq = amp.NonlinearData.Freq;
amp.NetworkData.Data = [0 0; TanhSeries(end-1) 0];
fig = figure;
plot(amp,'Pout');

Run the Test Harness with an Input Power of 7 dBm Per Tone

The following figure shows the test harness for your new amplifier. The input signal consists of the
sum of two tones, one 10kHz below the center frequency, and one 10kHz above it. The spectrum
scope shows the various intermodulation products at higher and lower frequencies than the two test
tones. The EVM subsystem calculates error vector magnitude. Open and Run
"rfb_user_defined_amp_mdl" model. To view and edit the preset model workspace values, click the
Modeling Tab in the Toolstrip and select Model Explorer .

%

open('rfb_user_defined_amp_mdl.slx');

 User-Defined Nonlinear Amplifier Model

8-139

sim('rfb_user_defined_amp_mdl');

8 RF Blockset Examples

8-140

Rerun the Simulation Using an Input Power Level of 8 dBm Per Tone

To increase the source power from 7dBm to 8 dBm from a MATLAB script, first get the handle to the
current Simulink® model workspace. Then set the appropriate workspace variable (power_in_dBm in
this example) to the value 8. Rerun the simulation. Notice that 11th order intermods (outermost tones
on the spectrum scope) increase by about 11 dB.

hws=get_param(bdroot, 'modelworkspace');
hws.assignin('power_in_dBm', 8);
sim('rfb_user_defined_amp_mdl');

Truncate the Hyperbolic Tangent Series to Only the First Four Terms

Reset the input power to 7 dBm. Then, specify the power series for the hyperbolic tangent using only
the first four terms of the series. Recalculate the output voltage values and the amplifier Pin-Pout

 User-Defined Nonlinear Amplifier Model

8-141

data. Rerun the simulation. The spectrum scope shows that only the third intermodulation products
are produced. You can also set the stop time to inf, rerun the simulation, and experiment to see the
effect of the slider gain (Blue box on the Simulink model).

hws.assignin('power_in_dBm', 7);
TanhSeries = [-1/3 0 1 0];
Vin = linspace(0.001,1,100); % volts
Vout = polyval(TanhSeries, Vin); % volts
amp.NonlinearData.Pin = {(Vin.^2)./Zref}; % watts
amp.NonlinearData.Pout = {(Vout.^2)./Zref}; % watts
sim('rfb_user_defined_amp_mdl');

bdclose('rfb_user_defined_amp_mdl');
close(fig);

See Also

Output Port | Input Port | Configuration | rfckt.amplifier

Related Topics

“Effect of Nonlinear Amplifier on 16-QAM Modulation” on page 8-120

8 RF Blockset Examples

8-142

Modeling and Simulation of MIMO RF Receiver Including
Beamforming

This example shows how to model a MIMO RF receiver with a baseband beamforming algorithm. It
considers antenna coupling effects and RF imperfections. The simulation of the system-level model
includes the RF receiver baseband beamforming algorithms, RF imperfections, and the antenna array
radiation pattern.

In the following sections, you will see more details about the transmitter, receiver, and beamforming
algorithm.

Transmitter and Channel

The transmitter and channel models are ideal.

• The transmitter constructs a simple modulated signal transmitted using a single antenna.
• The channel model introduces path loss attenuation and adds an interfering narrowband signal

with power level similar to the desired signal.

The model assumes that transmitter and receiver are positioned on the same plane. You can change
the angle of arrival of the desired transmitted signal and of the interfering signal by turning the dials
on the Simulink diagram.

• An angle of 90 degrees indicates that the transmitter is in front of the receiver, where the main
lobe of the antenna array radiation pattern is located.

• An angle of 120 degrees indicates that the transmitter is 30 degrees away from the normal axis to
the array, where a null of the radiation pattern is positioned.

Changing the relative angle of arrival for desired and interfering signals will change the relative
signal powers in the Spectrum Analyzer scope "Spectrum without Beamforming". In this case, all 8
received signals are just summed together, without applying any beamforming algorithm.

 Modeling and Simulation of MIMO RF Receiver Including Beamforming

8-143

8 RF Blockset Examples

8-144

Design the Receiver Antenna Array

The receiver antenna array is designed using Antenna Toolbox™. The Antenna Toolbox helps you
design an antenna at the desired operating frequency and verify that the pattern superposition of the
isolated element is an acceptable approximation for the array simulation.

Script to design and verify the antenna array

As you can see, the antenna array consists of 8 dipole antennas resonating at 5 GHz. The comparison
of the far-field radiation pattern of the array computed with full-wave analysis and pattern
superposition of the isolated element shows modest differences:

 Modeling and Simulation of MIMO RF Receiver Including Beamforming

8-145

However, the S-parameters show a non-negligible leakage between adjacent antennas.

8 RF Blockset Examples

8-146

RF Receiver

The receiver model includes:

• Model of receiver antenna array. The receiver antenna array is composed using 8 dipole antennas
operating at 5 GHz. The array radiation pattern is modeled with Phased Array System Toolbox™
"Narrowband Rx array". The array is simulated using pattern superposition of the isolated element
stored in the variable P_antenna, computed using Antenna Toolbox and the script. You can
visualize the radiation pattern by clicking the Analyze button in the sensor array tab.

• Model of RF receiver. The RF receiver is composed with eight non-linear superheterodyne
receivers and filters described with S-parameters. Each chain is designed with the RF Toolbox™
RF Budget Analyzer app as described in: RF Receiver Design example.

• Antenna array impedance is described with the eight-port S-parameters computed using Antenna
Toolbox. The S-parameters capture the loading of the antenna array on the RF receiver as well as
the coupling between the antenna elements. A lumped inductance for each receiver is used to
retune the respective antenna.

• Eight 12-bit ADCs capturing the finite dynamic range of the data converters by modeling
saturation and quantization.

DOA & Beamforming

The baseband receiver algorithm consists of four main elements in a closed feedback loop.

 Modeling and Simulation of MIMO RF Receiver Including Beamforming

8-147

• Root MUSIC algorithm to determine the Direction of Arrival assuming that two signals are
present. The two estimated DOA angles are passed to a state machine that determines which
angle produces the higher Modulation Error Ratio (MER). This state machine includes some time
delay in between state transitions to avoid decision jitter.

• MVDR Beamforming algorithm for the receiver to focus on the desired signal and suppress
interference and noise from other directions. It uses the angle chosen by the Control Logic to
maximize the MER.

• Signal Conditioning and estimation of the Modulation Error Ratio. The MER is used to determine
which angle to select for the beamforming algorithm.

Related Topics

“Modeling RF mmWave Transmitter with Hybrid Beamforming” on page 8-149

8 RF Blockset Examples

8-148

Modeling RF mmWave Transmitter with Hybrid Beamforming

This example illustrates a methodology for system-level modeling and simulation of a 66 GHz QPSK
RF transmit and receive systems with a 32-element hybrid beamforming antenna. The system
includes RF imperfections, transmit array radiation effects, a narrowband receive array and a
baseband receiver with corrections for system impairments and message decoding. The antenna
beamforming direction is defined using azimuth and elevation angles and it is estimated in the RF
receive antenna using a Root Music DOA algorithm.

In the following sections you will see more details about the system design.

Model Description

The top-level of this example consists of five sub-system blocks, a block to control the relative angle
between transmitter and receiver, and 2 displays:

• A QPSK baseband transmitter encodes the message "Hello World ###".
• An RF transmitter with IQ modulation, mixing, amplification and hybrid beamforming with control

circuitry. The RF transmitter model includes RF imperfections such as noise, non-linear effects
and antenna element coupling.

• An ideal channel attenuating the transmitted signal with a free space path loss model.
• An RF receiver with two narrowband receive array antennas, receiver gain and SNR, 12-bit ADC

with finite dynamic range, and two root MUSIC algorithms for angle of arrival estimation along
azimuth and elevation.

• A QPSK receiver, including carrier and frame synchronization, demodulation and data decoding.
• A block where the user sets the relative angle between the transmitter and the receiver.
• A spectrum analyzer scope comparing normalized transmitted and received signals and a display

for the received message.

model = 'simrfV2_qpsk';
open_system(model)
sim(model)

 Modeling RF mmWave Transmitter with Hybrid Beamforming

8-149

QPSK Transmitter

The QPSK transmitter includes a Bit Generation subsystem, a QPSK Modulator block, a Raised Cosine
Transmit Filter block for pulse shaping, and a Gain block. The Bit Generation subsystem generates
frames. Each frame contains 26 header bits followed by a payload of 174 bits, 105 bits for the
message 'Hello world ###' and 69 random bits. The payload is scrambled to guarantee a balanced
distribution of zeros and ones for the timing recovery operation in the receiver model.

open_system([model '/QPSK TX'],'force')

RF Transmitter

The RF transmitter is composed of three sections: array beamformers, a hybrid beamforming antenna
and a Narrowband Transmit Array block. The 32-element hybrid beamforming antenna is divided in 4
sub-arrays. Each subarray consists of 8 RF transmitters operating at 66 GHz. The antennas are
microstrip patches. These antenna elements and the subarrays have been designed and verified with
a MATLAB script that uses Antenna Toolbox™.

8 RF Blockset Examples

8-150

The far field antenna array gain is computed with the Phased Array System Toolbox™ Narrowband
Transmit Array block. The computed radiation pattern is the superposition of the fields generated by
the isolated microstrip patches.

open_system([model '/Transmit Array Hybrid Beamforming'])

Transmit Array Beamformers

The transmit array is steered towards the direction estimated by the receiver. For demonstration
purposes, two different beamforming algorithms are used to compute the weights applied to the four
subarrays and to the elements of each subarray.

The subarrays weights are computed with an MVDR beamformer. A complex multiplication in the
MVDR beamformer combines the transmitted signal and subarrays weights, steering the transmitted
signal along the azimuth direction. Tapering is used to reduce the effects of grating lobes.

The phase shifts applied to the eight subarray elements are computed with a phase shifter
beamforming algorithm. The four subarrays apply the same phase shifts that steer the transmitter
along the elevation direction.

open_system([model '/Transmit Array Hybrid Beamforming/Beamformers'])

 Modeling RF mmWave Transmitter with Hybrid Beamforming

8-151

Transmit Subarrays

The four transmit subarrays are identical. Each subarray performs upconversion to 66 GHz using a
quadrature modulator and a 5 GHz local oscillator followed by a superhet modulator that consists of a
61 GHz local oscillator, an image filter and a channel select filter. Impairments such as noise, I/Q
imbalance, LO leakage and non-linearities are included in the appropriate subarray components. A
non-linear power amplifier increases the transmitter gain, and a Wilkinson type 1-to-8 power divider
followed by variable phase shifters connects the PA to 8 antennas. The eight variable phase shifters
are used to steer the beam. The loading of the antenna subarray and the coupling in between the
antenna elements is modeled by its S-parameters.

open_system([model '/Transmit Array Hybrid Beamforming/subarray1'])

Receive Array

The receiver is modeled at a higher abstraction level compared to the transmitter. The receiver uses
two orthogonal linear arrays, each with four isotropic antenna elements. The arrays are used to
provide spatial diversity for the identification of the angle of arrival. The receiver does not implement
any beamforming algorithm.

The receiver finite gain and SNR is modeled for each of the received signals followed by a 12-bit ADC
with finite dynamic range including saturation and quantization effects.

Two root MUSIC algorithms are used to estimate the direction of arrival using the linear array
signals. Each algorithm operates across one dimension, thus together can estimate the transmitter
position in terms of azimuth and elevation angles.

open_system([model '/Receive Array'])

8 RF Blockset Examples

8-152

QPSK Receiver

The QPSK receiver from the Communications Toolbox™ example “QPSK Transmitter and Receiver”
(Communications Toolbox) is used in this example with modification. These modifications remove
blocks from this receiver when the signal impairment is absent.

• The AGC controls and stabilizes the received signal amplitude which affects the accuracy of the
carrier symbol synchronizer.

• The Raised Cosine Receive Filter provides matched filtering for the transmitted waveform.
• The Carrier Synchronizer Block performs fine frequency compensation.
• The Frame Synchronizer block uses the known frame header (QPSK-modulated Barker code) to

correlate against the received QPSK symbols to find the location of the frame header. The block
uses this frame location information to align the frame boundaries. The second output of the block
is a boolean scalar indicating if the first output is a valid frame with the desired header and if so,
enables the Data Decoding subsystem to run.

• The Data Decoding enabled subsystem performs phase ambiguity resolution, demodulation and
text message decoding.

open_system([model '/QPSK Receiver'])

 Modeling RF mmWave Transmitter with Hybrid Beamforming

8-153

8 RF Blockset Examples

8-154

bdclose(model)
clear model;

See Also
IQ Demodulator | Mixer | Power Amplifier

Related Examples
• “Modeling and Simulation of MIMO RF Receiver Including Beamforming” on page 8-143
• “Wireless Digital Video Broadcasting with RF Beamforming” on page 8-156

 Modeling RF mmWave Transmitter with Hybrid Beamforming

8-155

Wireless Digital Video Broadcasting with RF Beamforming

This example shows how to model a digital video broadcasting system which includes a 16 antenna
phased array receiver operating at 28 GHz. The baseband transmitter, receiver and channel are
realized with Communications Toolbox™. The RF receiver is implemented with the RF Blockset™
Circuit Envelope library, and the receive phased array antennas are constructed using Phased Array
System Toolbox™. The 4 x 4 planar phased array feeds a 16 channel receive module that includes
phase shifters to enable RF beamforming.

System Architecture

The system consists of:

• A Baseband Transmitter subsystem that is responsible for generating a 64-QAM signal occupying
2 MHz of bandwidth that adheres to the DVB-C standard.

• Channel effects in the form of path loss.

• A 16 element phased array receiver arranged in a 4 X 4 rectangular grid. This includes design
parameters for operating frequency, element radiation pattern, and receive direction.

• An RF receiver module consisting of 16 paths combined with a network of 2:1 power combiners
and then downconverted to baseband. Each path includes LNAs and variable phase shifters for RF
beamforming. The network of 2:1 power combiners is constructed twice to emulate a typical
design process. The initial design employs ideal Wilkinson power dividers as behavioral
combiners, while the second implementation uses actual hardware modeled with S-Parameters
blocks and measured data supplied via a Touchstone™ file (wireless.s3p).

• A Baseband Receiver subsystem that is responsible for extracting the transmitted signal. The
receiver includes simple models for correcting phase offsets and gain control effects.

Diagnostics are available at various stages in the system using the received constellation, the bit
error rate calculation, and the received spectrum.

model_ideal = 'simrfV2_wirelessdvb_beamform_ideal';
open_system(model_ideal)
sim(model_ideal)

8 RF Blockset Examples

8-156

 Wireless Digital Video Broadcasting with RF Beamforming

8-157

Designing with Ideal Components

An initial design may use ideal components to speed up the overall design process. For example, ideal
Wilkinson dividers from the RF Blockset Junctions library can be used to build a combiner system in
the Receive Antenna Array. This combiner system can be consolidated into a 17-port S-parameters
block to improve simulation performance. A simplified example of consolidation is shown where the
4:1 combiner system on the left is replaced with the 5-port S-parameters block on the right. The S-
parameters block entries are calculated in the WilkinsonTypeCombiner block mask initialization
commands.

model_combiner = 'simrfV2_wirelessdvb_beamform_prototype_combiner';
open_system(model_combiner)

8 RF Blockset Examples

8-158

Each input channel branch of the RF Receiver employs a separate amplifier to introduce thermal
noise and non-linearities. The quadrature demodulator following the combiner performs direct
downconversion and includes its non-linearities, LO leakage, I/Q mismatch, and noise impairments.

open_system([model_ideal '/RF Receiver'], 'force')

 Wireless Digital Video Broadcasting with RF Beamforming

8-159

bdclose(model_combiner)
bdclose(model_ideal)
clear model_ideal

8 RF Blockset Examples

8-160

Designing with Real Components

Use S-Parameters blocks to model a real combiner system. There are several options available to
characterize the behavior of each individual block in the combiner system; one approach utilizes a
data file directly while another approach provides a rational model of the data. For the latter
approach, utilize the rational function in RF Toolbox™, save the resulting parameters in the base
workspace and use them in the S-Parameters blocks. For this example, the measured data is
described in the Touchstone file wireless.s3p and used directly. To improve simulation performance
the combiner system is replaced with a 17-port S-Parameters block. The S-Parameters block
entries are calculated using the function simrfV2_wirelessdvb_beamforming_findcombinerspars in the
Initization commands of the RF Receiver subsystem mask.

model = 'simrfV2_wirelessdvb_beamforming';
open_system(model)
sim(model)

 Wireless Digital Video Broadcasting with RF Beamforming

8-161

The transmit side planar array is chosen to have 16 elements and transmits along the main beam
(azimuth = 0 deg. and elevation = 0 deg.) at a frequency of 28 GHz. An isotropic radiation pattern is
chosen for each element. Note that the power dividers introduce a phase shift at 28 GHz. This is
estimated and corrected in the Baseband receiver subsystem.

Modify the Receive Direction and Simulate

Modify the receive direction by changing the Receive Direction mask dialog parameter of the 16-
element Receive Antenna Array. The angle chosen decreases the signal strength due to the proximity
of a null in the array radiation pattern.

open_system(model)
set_param([model '/Receive Antenna Array'],'RecDir','[20;25]')
sim(model)

8 RF Blockset Examples

8-162

Improve RF Reception with Beamforming

Modify the Beamforming direction parameter for the 4 X 4 phased array on the receive side. This
mask parameter will automatically adjust the phase shift of each channel in the RF Receiver
subsystem. Run the simulation to observe an increase in the received signal level.

open_system(model)
set_param([model '/RF Receiver'],'BeamDir','[20;25]')
sim(model)

 Wireless Digital Video Broadcasting with RF Beamforming

8-163

bdclose(model)
clear model

8 RF Blockset Examples

8-164

References

S. Emami, R. F. Wiser, E. Ali, M. G. Forbes, M. Q. Gordon, X. Guan, S. Lo, P. T. McElwee, J. Parker, J. R.
Tani, J. M. Gilbert,, and C. H. Doan, "A 60 GHz CMOS Phased-Array Transceiver Pair for Multi-Gb/s
Wireless Communications," in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2011, pp. 164-165

See Also

More About
• “Modeling RF mmWave Transmitter with Hybrid Beamforming” on page 8-149
• “Modeling and Simulation of MIMO RF Receiver Including Beamforming” on page 8-143

 Wireless Digital Video Broadcasting with RF Beamforming

8-165

Top-Down Design of an RF Receiver

This example designs an RF receiver for a ZigBee®-like application using a top-down methodology. It
verifies the BER of an impairment-free design, then analyzes BER performance after the addition of
impairment models. The example uses the RF Budget Analyzer App to rank the elements
contributing to the noise and nonlinearity budget.

Design specifications:

• Data rate = 250 kbps
• OQPSK modulation with half sine pulse shaping, as specified in IEEE® 802.15.4 for the physical

layer of ZigBee
• Direct sequence spread spectrum with chip rate = 2 Mchips/s
• Sensitivity specification = -100 dBm
• Bit Error Rate (BER) specification = 1e-4
• Analog to digital converter (ADC) with 10 bits and 0 dBm saturation power

To create fully standard-compliant ZigBee waveforms, you can use the Communications Toolbox
Library for ZigBee and UWB Add-on.

This example guides you through the following steps:

• Develop the baseband transmitter model for waveform generation
• Determine SNR specification to achieve the 1e-4 BER from a link-level idealized baseband model
• Derive RF subsystem specifications from equivalent-baseband model of RF receiver and ADC
• Derive direct conversion specifications from circuit envelope model of RF receiver
• Perform multi-carrier simulation including interfering signals and derive the specifications of the

DC offset compensation algorithm

Design and Verify Baseband Transmitter

To evaluate the performance of the RF receiver design, it is necessary and sufficient to use a signal
spectrally representative of an 802.15.4 waveform.

The baseband transmitter model creates and illustrates a spectrally representative ZigBee waveform
in the spectral and constellation domains. This model and all the subsequent models use callbacks to
create MATLAB workspace variables that parameterize the systems.

8 RF Blockset Examples

8-166

https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb
https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb

 Top-Down Design of an RF Receiver

8-167

Determine Receiver SNR Requirement

To design the receiver, first determine the SNR needed to achieve the specified BER less than 1e-4.
calculated in the simulation bandwidth of 4 MHz. Run the link-level model to simulate the receiver
processing required to achieve the target BER.

Computing the BER accurately requires alignment of the transmit and receive signals. The simulation
must compensate for a two-sample delay of the received signal compared to the transmitted signal.
Also, to ensure correct chip-to-symbol-to-bit mapping, the simulation must align the chips to frame
boundaries at the input to the Chips to Symbol block on a frame boundary. Accounting for the receive
signal delay and the frame boundary alignment requires addition of a Delay block set to a 32-2=30
delay on the receiver branch before recovering the received symbols.

8 RF Blockset Examples

8-168

The model achieves a 1e-4 BER at an SNR of -2.7 dB, which can be verified by collecting 100 bit
errors.

In the link-level model, the AWGN block accounts for the overall channel and RF receiver SNR
budget.

Add ADC and Determine Receiver Total Gain and Noise Figure (NF)

This section uses traditional heuristic derivations to determine the high-level specifications of the RF
receiver and ADC.

• B = 4 MHz = simulation bandwidth = simulation sampling frequency
• kT = 174 dBm/Hz = thermal noise floor power density
• Sensitivity = -100 dBm = receiver sensitivity
• SNR = -2.7 dB
• Noise power in simulation bandwidth = Pn = sensitivity-SNR = -100 dBm - (-2.7 dB) = -97.3 dBm
• Pn = kT + 10*log10(B) + NF = -97.3 dBm

Solving for the receiver noise figure (NF):

NF = -97.3 dBm + 174 dBm/Hz -10*log10(4e6 Hz) = 10.7 dB

Derive the receiver gain using the ADC specifications and dynamic range.

• ADC Number of bits = Nbits = 10

 Top-Down Design of an RF Receiver

8-169

• ADC Saturation power = Psat = 0 dBm (50 Ohm normalization)
• ADC Sampling frequency = Fadc = 2.6 MHz
• ADC Dynamic Range = 6 * Nbits + 1.8 = 61.8 dB
• Noise power in ADC bandwidth = PNadc = Pn + 10log10(Fadc/Fs) = -99.2 dBm
• Assuming a 0.1 dB contribution to SNR, Quantization noise = PNadc - 16 dB
• Receiver Gain = (Psat - Dynamic Range) - PNadc + 16 dB = (0 dBm - 61.8 dB) - (-99.2 dBm) + 16

dB = 53.4 dB

Simulating an idealized baseband model of the RF Receiver, verify the preliminary RF receiver
specifications (NF = 10.7 dB and receiver gain = 53.4 dB). This can be done by collecting 100 errors.

The spectrum analyzer shows that the received spectrum with the ADC is roughly identical in shape
to the spectrum of the previous section, without the ADC.

8 RF Blockset Examples

8-170

Refine Architectural Description of RF Receiver

In this section the RF receiver, and its noise figure and gain budget specifications, are modelled by
using four discrete subcomponents with these characteristics:

• SAW Filter: Noise Figure = 2.3 dB, Gain = -3 dB
• LNA: Noise Figure = 6 dB, Gain = 22 dB
• Passive Mixer: Noise Figure = 10 dB, Gain = -5 dB
• VGA: Noise Figure = 14 dB, Gain = 40 dB

The SAW filter performance is derived from a Touchstone file that specifies S-parameters
characteristics. You can verify the gain by visualizing the S21 parameter in the X-Y plane at the
operating frequency of 2.45 GHz. You can verify the noise figure by visualizing the NF parameter in
the X-Y plane at the operating frequency of 2.45 GHz. Typically, an LNA with low noise and high gain
follows the SAW filter, which greatly reduces the impact of the noise figure of the components after
the LNA. Also, the passive mixer is specified with a high IP2. Similar to the SAW filter, you can verify
the mixer gain by visualizing the S21 parameter in the X-Y plane over a user-specified frequency
range of [2e9 3e9].

An equivalent baseband model simulates the refined RF receiver.

Run the simulation and verify the RF receiver link budget by using the output port visualization pane.
The total noise figure and gain across the four stages has been divided according to the following
budget:

 Top-Down Design of an RF Receiver

8-171

• Component NF (dB) = [2.3, 6, 10, 14]
• Component noise factor F (linear) = 10^(NF/10) = [1.78 3.98 10.0 25.1]
• Power gain (dB) = [-3, 22, -5, 40] = 54 dB > 53.4 dB
• Voltage gain VG (linear) = 10^(Power gain/20) = [0.71 12.59 0.56 100.0]
• System noise factor Fsys (linear) =

• System noise figure NFsys (dB) = 10*log10(Fsys) = 10.7 dB

The actual noise figure of the chain, taking into account impedance mismatches, can be verified at
the output port of the Equivalent Baseband Model of Receiver, and it is equal to 9.42dB.

With this model you can verify that a BER < 1e-4 corresponds to a Chip Error Rate (ChER) around
7%. By computing ChER, you can run the subsequent models for less time and still collect accurate
BER statistics.

8 RF Blockset Examples

8-172

Use Circuit Envelope to Simulate Additional RF Impairments

The equivalent baseband modeling technique used in the previous section cannot model a true direct
conversion receiver. That model used a mixer with an input frequency of 2.45 GHz and an LO
frequency of 2.4 GHz, which led to a spectrum analyzer center frequency of 50 MHz. This modeling
limitation motivates a change to the circuit envelope method.

Using the circuit envelope modeling approach, continue refining the RF receiver architecture by
adding more realistic impairments.

The circuit envelope model of the RF Receiver differs from the equivalent baseband model as it:

• Replaces the equivalent baseband mixer with a quadrature modulator, consisting of
parameterizable I and Q mixers and phase shifter block, and an LO with impairments

• Uses broadband impedances (50 ohm) to explicitly model the power transfer between blocks

Comparing spectra, power measurements, and ChER to the equivalent baseband model, there are no
significant performance differences. However, with the circuit envelope model, you can include even
order nonlinearity effects, I/Q imbalance, and specifications of colored noise distributions for each of
the components.

 Top-Down Design of an RF Receiver

8-173

You can manually build the circuit envelope model of the RF Receiver by using blocks from the Circuit
Envelope library, or it can be automatically generated using the RF Budget Analyzer app.

The RF Budget Analyzer app

• Uses Friis equations to determine the noise, gain, and nonlinearity budget of an RF chain, also
taking into account impedance mismatches

• Allows you to explore the receiver design space and determine how to break down the
specifications across the elements of the chain

• Helps you determine which element has the largest contribution to the noise and nonlinearity
budget

8 RF Blockset Examples

8-174

• Can generate an RF receiver model with which you can perform multi-carrier simulation and
further modify.

Type rfBudgetAnalyzer('TopDownRFReceiverDesign.mat') command at the command line to
visualize the RF receiver in the RF Budget Analyzer app.

Add Wideband Interference, LO Leakage, and DC Offset Cancellation

This section modifies the circuit envelope model to create this circuit envelope with interferer model.
The circuit envelope with interferer model includes a wideband interfering signal and these
impairments:

• LO-RF isolation of 90 dB in the quadrature demodulator
• OIP2 equal to 55 dBm in the quadrature demodulator
• WCDMA-like out-of-band blocker of -30 dBm at 2500 MHz

This simulation models a non-standard-compliant interfering signal that has power and spectral
distribution characteristics realistic for a WCDMA signal. The simulation of the wideband interfering
signal requires a larger simulation bandwidth of 16MHz. Therefore the 1 MHz OQPSK signal is
oversampled by 16, and the Circuit Envelope simulation bandwidth is also increased to 16 MHz.

The design requires a DC offset compensation algorithm to achieve the desired ChER due to the DC
offset that results from the LO leakage and the nonlinearity in the demodulator caused by the high
out-of-band interfering signal power. In this case you include a very selective filter, that introduces a
long latency with corresponding computation delay increases in the ChER measurement block.

The spectrum centered at 0 Hz shows the DC offset compensation reducing the DC offset. As you run
the model, note that the DC offset is eventually completely removed.

 Top-Down Design of an RF Receiver

8-175

8 RF Blockset Examples

8-176

Conclusion

Following a top-down design methodology, RF receiver components specifications were derived.
Impairment, interferer, and RF receiver subcomponent models were iteratively refined to increase
fidelity and validated at each stage to confirm overall system performance goals were achieved.

See Also
VGA | Mixer | S-Parameters Amplifier | General Passive Network

More About
• “Architectural Design of a Low IF Receiver System” on page 8-178
• “Carrier to Interference Performance of Weaver Receiver” on page 7-48
• “Frequency Response of RF Transmit/Receive Duplex Filter” on page 8-75

 Top-Down Design of an RF Receiver

8-177

Architectural Design of a Low IF Receiver System

This example shows how to use the RF Blockset™ Circuit Envelope library to simulate the
performance of a Low IF architecture with the following RF impairments:

• Component noise
• Interference from blocker signals
• LO phase noise
• Analog-to-digital converter (ADC) dynamic range
• Component mismatch

Design variables in the RF portion of the model include explicit specification of gain, noise figure,
IP3, input/output impedance, LO phase offset, and LO phase noise. Carrier frequencies for waveforms
entering RF Blockset subsystems are specified in the Inport blocks. Design variables for the
transmitter side of the RF interface include carrier frequency, modulation scheme, signal power, and
blocker power level. Baseband design variables are number of bits and full scale range of the ADC.

System Architecture

This model illustrates the design and simulation of an ISM Band Receiver. Primary subsystems
include a digital transmitter, an RF receiver, an ADC, a phase noise block for noisy LO modeling, and
a digital receiver. The remaining blocks are used for analysis.

8 RF Blockset Examples

8-178

 Architectural Design of a Low IF Receiver System

8-179

The digital transmitter consists of three FSK modulated waveforms and a high power tone. The three
FSK waveform generators use a bandlimiting filter that suppresses the FSK sidebands below the
expected thermal noise level. The target waveform at 2450 MHz has a 1 ohm referenced passband
power level of approximately -70 dBm. Similarly defined image and intermodulation distortion (IMD)
blocker waveforms have passband powers of approximately -40 dBm and -33 dBm, respectively. The
IMD tone that couples with the IMD blocker to generate in-band IM3 products has a passband power
of -33 dBm. Since the baseband processing defines the complex envelope waveforms, computing
passband power requires the insertion of 1/sqrt(2) gain as shown in the design. An IF of 2 MHz can
be inferred by inspecting the demodulator input signal spectrum, where a 2 MHz offset is specified
for the display.

The Low IF receiver is comprised of a receive band SAW filter, a frequency conversion stage, an
image rejection stage, and two gain stages. Resistors are used to model input and output impedances.
Each nonlinear block has a noise figure specification. Power nonlinearities in the low noise amplifier
(LNA), IF amplifier and mixers are specified by IP3. Image rejection is accomplished with a Hartley
design, and single LO and phase shift blocks provide cosine and sine terms to mix with the I and Q
branches, respectively. The summation block recombines the signals on the I branch and the phase-
shifted Q branch. Image rejection quality can be controlled directly by setting a non-ideal phase offset
in the Phase Shift block. To capture the RF, Image, IMD Signal and IMD Tone waveforms/spectra,
choose the Fundamental tones to be 2450 MHz, 1 MHz and the Harmonic Order as 1 for the first
tone and 8 for the second tone within the Configuration block. To model a thermal noise floor in the
RF Blockset environment, the Temperature within the System Parameters section in the
Configuration block is set to a noise temperature of 290.0 K.

8 RF Blockset Examples

8-180

The ADC is modeled using an a 12-bit quantizer. The quantizer takes into account the full-scale and
dynamic ranges of the ADC, properly modeling its quantization noise floor.

A digital receiver demodulates the waveform for bit error rate calculation. This noncoherent FSK
receiver assumes perfect timing synchronization, such that each FSK pulse is integrated over one and
only one symbol.

Running the Example

Running the example simulates a design that meets an uncoded BER spec of less than 1%.
Modifications to the signals and component specifications in the receiver and ADC have a direct
impact on the receiver performance. Manual switches enable you to:

1 Select a power level for the IMD blocker tone of -33 dBm or -45 dBm
2 Select an ideal or noisy LO.

Other possible changes to the design include:

• Image rejection ratio (IRR) of the Hartley design. The IRR of the present design (dPhi=0.01
degrees) is -40 dB. For more information on calculating IRR, see the example “Measuring Image
Rejection Ratio in Receivers” on page 8-66 Measuring Image Rejection Ratio in
Receivers>.

• Modulation schemes
• Baseband filtering options
• Signal power levels
• Signal carrier frequencies
• Noise figures
• Non-linear gain parameters
• Interstage matching
• ADC bit length and full scale range

 Architectural Design of a Low IF Receiver System

8-181

8 RF Blockset Examples

8-182

See Also
Amplifier | Mixer | Outport

More About
• “Top-Down Design of an RF Receiver” on page 8-166
• “Carrier to Interference Performance of Weaver Receiver” on page 7-48
• “Frequency Response of RF Transmit/Receive Duplex Filter” on page 8-75

 Architectural Design of a Low IF Receiver System

8-183

RF Noise Modeling

This example shows how to use the RF Blockset™ Circuit Envelope library to simulate noise and
calculate noise power. Results are compared against theoretical calculations and a Communications
Toolbox™ reference model.

System Architecture

The model defines variables for block parameters using the PreloadFcn callback function. To access
model callbacks, select MODELING > Model Settings > Model Properties and select the
Callbacks tab in the Model Properties window.

The RF system, shown in white, consists of these blocks.

• Configuration block - This block sets global simulation parameters for the RF Blockset system.
Selecting Simulate Noise adds noise to the simulation.

• External Noise block - This block adds a power spectral density of at the input. In this
equation, is the Boltzmann constant, is the temperature of the source, and is the noise
reference impedance. The calculated noise level of -174 dBm/Hz is used in this example. The
External Noise block provides an explicit signal source.

• Amplifier block - This block specifies the power gain and noise figure.
• Voltage Sensor block - This is an Outport block with the Source type parameter set to Ideal

voltage.

8 RF Blockset Examples

8-184

• Resistor blocks - These blocks specify the source and load resistance.

The Communications Toolbox reference system, shown in green, consists of these blocks.

• Constant Power block - This block provides a constant input signal source.
• Gain blocks - These blocks model front end gain, amplifier gain and loading effects.
• Receiver Thermal Noise blocks - These blocks model the external noise floor and the reference
amplifier noise, respectively.

The Calculate Power block computes RMS noise power for the actual load resistance, R_load.

Run Example

1 Use the Open Model button to open and run the model.

The Noise Power Display block verifies that the RF Blockset and Communications Toolbox noise
models are equivalent.

Compute RF System Noise

To enable noise in the RF Blockset circuit envelope environment:

• In the Configuration block dialog, select Simulate noise.
• Specify a Temperature. RF Blockset uses this value to calculate the equivalent noise temperature

inside the amplifier.
• Specify the Noise figure (dB) parameter of any amplifiers or mixers in the system.

In the example, for a specified LNA gain of 4 dB and noise figure of 3 dB, the output noise is
calculated using the following equations:

The next equation converts the noise factor to an equivalent noise temperature. is the
Temperature parameter of the RF Blockset Configuration block.

The final equation calculates the output noise power. is the temperature of the SimRF™ External
Noise block and the Communications Toolbox External Noise Floor block.

The available noise power is the power that can be supplied by a resistive source when it is feeding a
noiseless resistive load equal to the source resistance. The green External Noise Floor block
generates an available power referenced to 50 ohms.

The Front End Gain block models the voltage divider due to the source resistance and the input
impedance of the amplifier.

The green Reference Amplifier Noise and Amplifier Gain blocks model the noise added by the
amplifier and the amplifier gain, respectively.

 RF Noise Modeling

8-185

The output of the green Amplifier Gain block is equal to the voltage across the RF Blockset R_load
block.

See Also
Noise | Noise Figure Testbench

More About
• “Noise in RF Systems” on page 2-7
• “Model LO Phase Noise” on page 7-42

8 RF Blockset Examples

8-186

Impact of Thermal Noise on Communication System
Performance

This example shows how to use the RF Blockset™ Circuit Envelope library to model thermal noise in
a super-heterodyne RF receiver and measure its effects on a communications system noise figure
(NF) and bit error rate (BER). A Communications Toolbox™ reference model with parameters
computed using Friis equations and a RF Blockset Noise Testbench are used to verify the results.

RF Receiver System Architecture

The Modulator and Channel subsystems consist of Communications Toolbox blocks that model:

• A QPSK-modulated waveform of random bits
• A raised cosine pulse-shaping filter for spectral limiting
• free-space path loss

The RF receiver subsystem, shown in light purple, consists of RF Blockset blocks:

• An Inport block converts the complex input waveform to available power in the RF system with
reference impedance equal to the Source impedance and assigns the input modulation waveform
to a 2.1 GHz RF carrier.

• A noise source to set the RF system noise floor for all simulation carrier frequencies. The block
performs this action when White is selected for the mask Noise distribution option. To set the
Noise power spectral density level, a value of 4*K*T*50 is used (K is Boltzmann's constant, T is
set to a room temperature of 290 kelvin, and 50 ohms is the system reference impedance).

• Cascaded RF amplifier and RF demodulator blocks with specified noise figure and gain. These
blocks only enable noise impairments. The Demodulator block's image reject filter is enabled
using a mask checkbox and defines with other mask parameters a bandpass filter whose edges are
2.0 and 2.2 GHz. This filter prevents the down-conversion of thermal noise centered around 2.6
GHz or folding of other carrier frequencies with noise into the intermediate frequency (IF) defined
as the absolute difference of the RF and LO frequencies. If the image rejection filter is removed,
the noise contribution on the IF increases above the estimation provided by Friis equations and
the BER will deteriorate.

• An Outport block, with the parameter Sensor type is set to Power, Carrier frequencies set to
the IF frequency, and Output parameter is set to Complex baseband. These block settings
enable the RF system to supply a complex baseband communication signal to the ensuing
Communication Toolbox system blocks.

• A Configuration block to set model conditions for simulation. Since the model's RF Blockset
section has only included noise impairments, an accurate simulation can be achieved by setting
the Configuration block Fundamental tones to the Inport Carrier (RF), 5e8 Hz and Demodulator
Local oscillator (LO), 1.6e9 Hz frequencies and the Harmonic order 1 . Use the Configuration
blocks View button to explore simulation carrier frequencies.

• All blocks in the RF receiver are matched to 50 ohms. To understand the effects of impedance
mismatch on noise simulation see, “RF Noise Modeling” on page 8-184.

The reference system, shown in red, consists of:

• A Communications Toolbox Receiver Thermal Noise block that includes both the thermal noise
floor along with the amplifier and demodulator block noise. The Friis Equation is used to correctly

 Impact of Thermal Noise on Communication System Performance

8-187

combined noise contributed by the amplifier and demodulator blocks. You can find the calculation
in the model's pre-load callback function.

• A Simulink Gain block that models the combined gain of the RF receiver.
• Baseband filters and demodulators process the received signal.

Circuit Envelope Simulation of RF Receiver

Select Simulation > Run .

Error Rate Calculation blocks compute the BER for the system and reference. To observe the BER as
it approaches steady state, increase the total simulation time. For this example, the steady-state bit
error rate is approximately 1e-4 .

Computing RF Receiver Noise Figure and Gain

To model noise and gain in the RF Blockset circuit envelope environment:

• In the Configuration block dialog, select Simulate noise.
• Specify the Noise figure (dB) parameter of RF Amplifier and RF Mixer blocks in your system.

The following specifications for the RF receiver in this example produce a combined noise figure
of 9.16 dB (as per the Friis Equation): LNA gain of 20 dB, LNA noise figure of 9 dB, Demodulator
gain of -5 dB and RF Demodulator noise figure of 15 dB.

8 RF Blockset Examples

8-188

RF Blockset Noise Figure Testbench

The RF Blockset Noise Figure Testbench simplifies the measurement of system noise figure. To setup
a noise figure test system, insert an RF Noise Figure Testbench in a new model. Copy the settings
found in the Model Properties Callbacks PreLoadFcn to the new models Model Properties Callback
InitFcn.

For the system composed of RF Blockset blocks in the above model, copy the LNA and Demodulator
blocks with previously set parameters to the new model. The Testbench includes a Noise source that
sets the noise floor.

• Connect the Stimulus terminal of the testbench to the In terminal of the LNA and the Out terminal
of the Demodulator to testbench Response terminal. A Display block can be connected to the
testbench NF terminal to display the measured Noise figure.

• Set the Testbench mask parameters. The RF Input frequency (Hz) is 2.1 GHz and the IF
Output frequency (Hz) is .5 GHz as in the previous example. A 10e6 Hz Baseband bandwidth
(Hz) was chosen for this example. The mask instructions provide additional information for
configuring the testbench.

For the Communications Friis system in the above model, copy the Combined Noise and Gain blocks
with previously set parameters to the new model. The Combined Noise block's Add 290K antenna
noise checkbox needs to be deselected since the Testbench includes a Noise source that sets the
noise floor.

• Three RF Blockset blocks are included: an Outport, an Inport and a Configuration since the
testbench expects RF Blockset blocks at its connection points. The type setting for the Inport and
Outport blocks is Power. Since the Communication branch is agnostic to carrier frequencies, these
blocks Carrier frequencies and Fundamental tones need to be the same and are set to 2.1 GHz.
The Output parameter of the Outport is Complex Baseband. For accuracy, the configuration
block Step size needs an Envelope bandwidth (Step size of 1/80e6 s) at least 8 times larger
than the 10 MHz Baseband bandwidth of the testbench.

Run Noise Figure Testbench

Select Simulation > Run .

 Impact of Thermal Noise on Communication System Performance

8-189

Exploring Example

You can include additional RF model impairments using RF block mask selections: Impedance
mismatch, nonlinearities or LO isolation.

See Also
Noise | Amplifier | Demodulator

Related Examples
• “RF Noise Modeling” on page 8-184
• “Explicitly Simulate Resistor Thermal Noise” on page 7-5

8 RF Blockset Examples

8-190

100 Watt TR Module for S-Band Applications

This example shows how to use the RF Blockset™ Circuit Envelope library to simulate a 100 Watt
transmit and receive (TR) module. Three TR switches provide isolation between the transmitter and
receiver and share a common path and components between both chains. You simulate the output
power of transmit and receive chains and derive the achieved isolation.

System Architecture

The system consists of a transmit and receive module, and contains three TR single-pole double-
throw switches arranged in a network that maximizes isolation and allows having a common path
with programmable attenuation for both transmitter and receiver. The tunable TR switch control
allows you to toggle the three TR switches simultaneously while running the simulation. When you
toggle the controller, you enable either the transmit or the receive path. A slider allows you to change
the tunable attenuation on the common path between 0 dB and 10 dB. The attenuation can be
changed while running the simulation.

A continuous wave (CW) source centered at 2.1 GHz with nominal input power of 0 dBm is applied to
both transmitter and receiver. Three circulators are used to separate the input and the output power
of both transmitter and receiver paths. Thermal noise with white distribution is also added to the
input signal to define the noise floor.

All amplifiers in the transmit, receive, and common path also generate noise specified by their noise
figure.

TR Switches

You toggle the single-pole double-throw switches simultaneously. The switches are of absorptive type
to reduce reflections at their ports. They are characterized by a very small insertion loss (0.01 dB)
and very high isolation (100 dB). This small insertion loss and high isolation of the switches directly
reflects on the high isolation between the transmit and receive path, and has the benefit of reducing
the impact of impedance mismatches and reflections along the chain.

When the TR Switch control is ON, the TX path is enabled and the first output (Out1) of the switches
is connected to the input. When the TR Switch control is OFF, the RX path is enabled and the second
output (Out2) of the switches is connected to the input.

Transmitter

When transmit mode is enabled, the signal is first processed by the common path, and then amplified
by the Driver Amplifier and Power Amplifier blocks. The total gain of the transmit chain, for nominal 0
dB attenuation, is approximately 52 dB. The combined gain of the Driver Amplifier and Power
Amplifier blocks (transmit gain) is 40 dB.

When the input power of the transmitter is 0 dBm, the output power is approximately 50 dBm (100
Watts) and the received power is below –50 dBm. This result is due to input reflections of the
transmitted signal on the TR switches.

When the input power of the transmitter is 0 W, the output power of the receiver is –73 dBm, equal to
the receiver input power (0 dBm), plus the receive gain (27 dB), minus the switch isolation (100 dB).

Receiver

 100 Watt TR Module for S-Band Applications

8-191

When receive mode is enabled, the signal is first amplified by the LNA and Stage Amplifier blocks,
then it is processed by the common path. The total gain of the receive chain, for nominal 0 dB
attenuation, is approximately 39 dB. The combined gain the LNA and Stage Amplifier is 27 dB
(receive gain).

When the input power of the receiver is 0 dBm, the output power is approximately 40 dBm, and the
transmitted power is below –20 dBm, equal to the receiver input power (0 dBm), plus the common
path (12 dB) and receive gain (40 dB), minus the switch isolation (100 dB), plus the transmit gain (40
dB).

When the input power of the receiver is 0 W, the output power of the transmitter is –60 dBm, equal to
the transmit input power (0 dBm), plus the transmit gain (40 dB), minus the switch isolation (100 dB).

Common Path Components

The common path is active during transmission and reception and consists of a Common Path Gain,
Phase Shifter, and Attenuator blocks. The total gain of the common chain, for nominal 0 dB
attenuation, is approximately 12 dB. The attenuator block is tunable while the simulation is running,
and it generates noise proportional to the insertion loss.

Select Run from the Simulation tab to simulate the TR module.

open_system("TRModule.slx")
sim("TRModule.slx")

ans =

 Simulink.SimulationOutput:
 tout: [80001x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

8 RF Blockset Examples

8-192

Noise Figure Measurement

Measure the noise figure of the receiver using the Noise Figure Testbench. This testbench provides
Stimulus and Response ports that must be connected to the input and output of the receive chain. In
this model, the TR module is configured in receive mode, and the transmit input port is terminated on
a 50 ohm impedance.

Select Run from the Simulation tab to simulate the TR module with the Noise Figure Testbench to
measure the noise figure of the TR Module.

open_system("TRModule_NF.slx")
sim("TRModule_NF.slx")

ans =

 Simulink.SimulationOutput:
 tout: [8001x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

 100 Watt TR Module for S-Band Applications

8-193

You can experiment and increase the attenuation; however, high gain and low noise of the amplifiers
at the beginning of the chain, the total noise figure remains almost unchanged. If you change the
attenuation slider while running the simulation, you need to clear the noise history to reset the
measurement in the noise figure testbench. The measured Noise Figure value is approximately 3.2
dB, which can be confirmed with a receiver budget analysis in the RF Budget Analysis app as
shown below.

 load('RX_Budget.mat')

Type show(rfb) to display the system in the RF Budget Analyzer app.

8 RF Blockset Examples

8-194

See Also
Circulator | SPST | SPDT

Related Examples
• “Transmission Lines, Delay-Based and Lumped Models” on page 8-47

 100 Watt TR Module for S-Band Applications

8-195

Massive MIMO Hybrid Beamforming with RF Impairments

This example shows how hybrid beamforming is employed at the transmit end of a massive MIMO
communications system, using techniques for both multi-user and single-user systems. The example
employs full channel sounding for determining the channel state information at the transmitter. It
partitions the required precoding into digital baseband and analog RF components, using different
techniques for multi-user and single-user systems. Simplified all-digital receivers recover the multiple
transmitted data streams to highlight the common figures of merit for a communications system,
namely, EVM, and BER.

The example employs a scattering-based spatial channel model which accounts for the transmit/
receive spatial locations and antenna patterns. A simpler static-flat MIMO channel is also offered for
link validation purposes.

The example uses RF Toolbox™, RF Blockset (TM), Communications Toolbox™, Phased Array System
Toolbox™, and Parallel Computing Toolbox™ to simulate massive MIMO hybrid beamforming
communication systems. .

Introduction

The ever-growing demand for high data rate and more user capacity increases the need to use the
available spectrum more efficiently. Multi-user MIMO (MU-MIMO) improves the spectrum efficiency
by allowing a base station (BS) transmitter to communicate simultaneously with multiple mobile
stations (MS) receivers using the same time-frequency resources. Massive MIMO allows the number
of BS antenna elements to be on the order of tens or hundreds, thereby also increasing the number of
data streams in a cell to a large value.

The next generation, 5G, wireless systems use millimeter wave (mmWave) bands to take advantage of
their wider bandwidth. The 5G systems also deploy large scale antenna arrays to mitigate severe
propagation loss in the mmWave band.

Compared to current wireless systems, the wavelength in the mmWave band is much smaller.
Although this allows an array to contain more elements within the same physical dimension, it
becomes much more expensive to provide one transmit-receive (TR) module, or an RF chain, for each
antenna element. Hybrid transceivers are a practical solution as they use a combination of analog
beamformers in the RF and digital beamformers in the baseband domains, with fewer RF chains than
the number of transmit elements [1].

This example uses a multi-user MIMO-OFDM system to highlight the partitioning of the required
precoding into its digital baseband and RF analog components at the transmitter end. Building on the
system highlighted in the “MIMO-OFDM Precoding with Phased Arrays” (Phased Array System
Toolbox) example, this example shows the formulation of the transmit-end precoding matrices and
their application to a MIMO-OFDM system.

tic
s = rng(67); % Set RNG state for repeatability

System Parameters

Define system parameters for the example. Modify these parameters to explore their impact on the
system.

% Multi-user system with single/multiple streams per user
prm.numUsers = 3; % Number of users

8 RF Blockset Examples

8-196

prm.numSTSVec = [2 1 1]; % Number of independent data streams per user
prm.numSTS = sum(prm.numSTSVec); % Must be a power of 2
prm.numTx = prm.numSTS*8; % Number of BS transmit antennas (power of 2)
prm.numRx = prm.numSTSVec*4; % Number of receive antennas, per user (any >= numSTSVec)

% Each user has the same modulation
prm.bitsPerSubCarrier = 4; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols

% MS positions: assumes BS at origin
% Angles specified as [azimuth;elevation] degrees
% az in range [-180 180], el in range [-90 90], e.g. [45;0]
maxRange = 1000; % all MSs within 1000 meters of BS
prm.mobileRanges = randi([1 maxRange],1,prm.numUsers);
prm.mobileAngles = [rand(1,prm.numUsers)*360-180; ...
 rand(1,prm.numUsers)*180-90];

prm.fc = 28e9; % 28 GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps
prm.ChanType = 'MIMO'; % Channel options: 'Scattering', 'MIMO'
prm.NFig = 8; % Noise figure (increase to worsen, 5-10 dB)
prm.nRays = 500; % Number of rays for Frf, Fbb partitioning

Define OFDM modulation parameters used for the system.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NullCarrierIndices = [1:7 129 256-5:256]'; % Guards and DC
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232]';
nonDataIdx = [prm.NullCarrierIndices; prm.PilotCarrierIndices];
prm.CarriersLocations = setdiff((1:prm.FFTLength)', sort(nonDataIdx));

numSTS = prm.numSTS;
numTx = prm.numTx;
numRx = prm.numRx;
numSTSVec = prm.numSTSVec;
codeRate = 1/3; % same code rate per user
numTails = 6; % number of termination tail bits
prm.numFrmBits = numSTSVec.*(prm.numDataSymbols*prm.numCarriers* ...
 prm.bitsPerSubCarrier*codeRate)-numTails;
prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
numPadSym = 3; % number of symbols to zeropad
prm.numPadZeros = numPadSym*(prm.FFTLength+prm.CyclicPrefixLength);

Define transmit and receive arrays and positional parameters for the system.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;

% Get transmit and receive array information
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);

% Transmit antenna array definition
% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
if isTxURA

 Massive MIMO Hybrid Beamforming with RF Impairments

8-197

 % Uniform Rectangular array
 txarray = phased.PartitionedArray(...
 'Array',phased.URA([expFactorTx numSTS],0.5*prm.lambda),...
 'SubarraySelection',ones(numSTS,numTx),'SubarraySteering','Custom');
else
 % Uniform Linear array
 txarray = phased.ULA(numTx, 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',false));
end
prm.posTxElem = getElementPosition(txarray)/prm.lambda;

spLoss = zeros(prm.numUsers,1);
prm.posRx = zeros(3,prm.numUsers);
for uIdx = 1:prm.numUsers

 % Receive arrays
 if isRxURA(uIdx)
 % Uniform Rectangular array
 rxarray = phased.PartitionedArray(...
 'Array',phased.URA([expFactorRx(uIdx) numSTSVec(uIdx)], ...
 0.5*prm.lambda),'SubarraySelection',ones(numSTSVec(uIdx), ...
 numRx(uIdx)),'SubarraySteering','Custom');
 prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
 else
 if numRx(uIdx)>1
 % Uniform Linear array
 rxarray = phased.ULA(numRx(uIdx), ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
 prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
 else
 rxarray = phased.IsotropicAntennaElement;
 prm.posRxElem = [0; 0; 0]; % LCS
 end
 end

 % Mobile positions
 [xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngles(1,uIdx)), ...
 deg2rad(prm.mobileAngles(2,uIdx)), ...
 prm.mobileRanges(uIdx));
 prm.posRx(:,uIdx) = [xRx;yRx;zRx];
 [toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx(:,uIdx));
 spLoss(uIdx) = fspl(toRxRange,prm.lambda);
end

Channel State Information

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first. The BS
sounds the channel by using a reference transmission, that the MS receiver uses to estimate the
channel. The MS transmits the channel estimate information back to the BS for calculation of the
precoding needed for the subsequent data transmission.

The following schematic shows the processing for the channel sounding modeled.

8 RF Blockset Examples

8-198

For the chosen MIMO system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver antenna elements perform pre-
amplification, OFDM demodulation, and frequency domain channel estimation for all links.

% Generate the preamble signal
prm.numSTS = numTx; % set to numTx to sound out all channels
preambleSig = helperGenPreamble(prm);

% Transmit preamble over channel
prm.numSTS = numSTS; % keep same array config for channel
[rxPreSig,chanDelay] = helperApplyMUChannel(preambleSig,prm,spLoss);

% Channel state information feedback
hDp = cell(prm.numUsers,1);
prm.numSTS = numTx; % set to numTx to estimate all links
for uIdx = 1:prm.numUsers

 % Front-end amplifier gain and thermal noise
 rxPreAmp = phased.ReceiverPreamp(...
 'Gain',spLoss(uIdx), ... % account for path loss
 'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
 rxPreSigAmp = rxPreAmp(rxPreSig{uIdx});
 % scale power for used sub-carriers
 rxPreSigAmp = rxPreSigAmp * (sqrt(prm.FFTLength - ...
 length(prm.NullCarrierIndices))/prm.FFTLength);

 % OFDM demodulation
 rxOFDM = ofdmdemod(rxPreSigAmp(chanDelay(uIdx)+1: ...
 end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
 prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
 prm.NullCarrierIndices,prm.PilotCarrierIndices);

 % Channel estimation from preamble
 % numCarr, numTx, numRx
 hDp{uIdx} = helperMIMOChannelEstimate(rxOFDM(:,1:numTx,:),prm);

end

 Massive MIMO Hybrid Beamforming with RF Impairments

8-199

For a multi-user system, the channel estimate is fed back from each MS, and used by the BS to
determine the precoding weights. The example assumes perfect feedback with no quantization or
implementation delays.

Hybrid Beamforming

The example uses the orthogonal matching pursuit (OMP) algorithm [3] for a single-user system and
the joint spatial division multiplexing (JSDM) technique [2, 4] for a multi-user system, to determine
the digital baseband Fbb and RF analog Frf precoding weights for the selected system configuration.

For a single-user system, the OMP partitioning algorithm is sensitive to the array response vectors
At. Ideally, these response vectors account for all the scatterers seen by the channel, but these are
unknown for an actual system and channel realization, so a random set of rays within a 3-dimensional
space to cover as many scatterers as possible is used. The prm.nRays parameter specifies the
number of rays.

For a multi-user system, JSDM groups users with similar transmit channel covariance together and
suppresses the inter-group interference by an analog precoder based on the block diagonalization
method [5]. Here each user is assigned to be in its own group, thereby leading to no reduction in the
sounding or feedback overhead.

% Calculate the hybrid weights on the transmit side
if prm.numUsers==1
 % Single-user OMP
 % Spread rays in [az;el]=[-180:180;-90:90] 3D space, equal spacing
 % txang = [-180:360/prm.nRays:180; -90:180/prm.nRays:90];
 txang = [rand(1,prm.nRays)*360-180;rand(1,prm.nRays)*180-90]; % random
 At = steervec(prm.posTxElem,txang);
 AtExp = complex(zeros(prm.numCarriers,size(At,1),size(At,2)));
 for carrIdx = 1:prm.numCarriers
 AtExp(carrIdx,:,:) = At; % same for all sub-carriers
 end

 % Orthogonal matching pursuit hybrid weights
 [Fbb,Frf] = omphybweights(hDp{1},numSTS,numSTS,AtExp);

 v = Fbb; % set the baseband precoder (Fbb)
 % Frf is same across subcarriers for flat channels
 mFrf = permute(mean(Frf,1),[2 3 1]);

else
 % Multi-user Joint Spatial Division Multiplexing
 [Fbb,mFrf] = helperJSDMTransmitWeights(hDp,prm);

 % Multi-user baseband precoding
 % Pack the per user CSI into a matrix (block diagonal)
 steeringMatrix = zeros(prm.numCarriers,sum(numSTSVec),sum(numSTSVec));
 for uIdx = 1:prm.numUsers
 stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
 steeringMatrix(:,stsIdx,stsIdx) = Fbb{uIdx}; % Nst-by-Nsts-by-Nsts
 end
 v = permute(steeringMatrix,[1 3 2]);

end

% Transmit array pattern plots
if isTxURA

8 RF Blockset Examples

8-200

 % URA element response for the first subcarrier
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
 'ElementWeights',mFrf.'*squeeze(v(1,:,:)), ...
 'PropagationSpeed',prm.cLight);
else % ULA
 % Array response for first subcarrier
 wts = mFrf.'*squeeze(v(1,:,:));
 figure
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
 'Weights',wts(:,1),'PropagationSpeed',prm.cLight);
end
prm.numSTS = numSTS; % revert back for data transmission

For the wideband OFDM system modeled, the analog weights, mFrf, are the averaged weights over
the multiple subcarriers. The array response pattern shows distinct data streams represented by the
stronger lobes. These lobes indicate the spread or separability achieved by beamforming. The
“Introduction to Hybrid Beamforming” (Phased Array System Toolbox) example compares the
patterns realized by the optimal, fully digital approach, with those realized from the selected hybrid
approach, for a single-user system.

Data Transmission

The example models an architecture where each data stream maps to an individual RF chain and
each antenna element is connected to each RF chain. This is shown in the following diagram.

 Massive MIMO Hybrid Beamforming with RF Impairments

8-201

Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
baseband precoding of the transmit streams, OFDM modulation with pilot mapping and RF analog
beamforming for all the transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
 'TrellisStructure',poly2trellis(7,[133 171 165]), ...
 'TerminationMethod','Terminated');

txDataBits = cell(prm.numUsers, 1);
gridData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for uIdx = 1:prm.numUsers
 % Generate mapped symbols from bits per user
 txDataBits{uIdx} = randi([0,1],prm.numFrmBits(uIdx),1);
 encodedBits = encoder(txDataBits{uIdx});

 % Bits to QAM symbol mapping
 mappedSym = qammod(encodedBits,prm.modMode,'InputType','bit', ...
 'UnitAveragePower',true);

 % Map to layers: per user, per symbol, per data stream
 stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:numSTSVec(uIdx));
 gridData(:,:,stsIdx) = reshape(mappedSym,prm.numCarriers, ...
 prm.numDataSymbols,numSTSVec(uIdx));
end

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
 for carrIdx = 1:prm.numCarriers
 Q = squeeze(v(carrIdx,:,:));
 normQ = Q * sqrt(numTx)/norm(Q,'fro');
 preData(carrIdx,symIdx,:) = squeeze(gridData(carrIdx,symIdx,:)).' ...
 * normQ;
 end
end

% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);

8 RF Blockset Examples

8-202

% OFDM modulation of the data
txOFDM = ofdmmod(preData,prm.FFTLength,prm.CyclicPrefixLength,...
 prm.NullCarrierIndices,prm.PilotCarrierIndices,pilots);
% scale power for used sub-carriers
txOFDM = txOFDM * (prm.FFTLength/ ...
 sqrt((prm.FFTLength-length(prm.NullCarrierIndices))));

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];
[m,n] = size(txSigSTS);
k = prm.numTx;

Add RF Impairments from the Tx RFFE

Add RF impairments from the Tx RFFE and instantiate the Parallel Pool of workers and load RF
system object

poolobj = gcp;
if isempty(poolobj)
 poolsize = 0;
else
 poolsize = poolobj.NumWorkers;
end

load rfb_mu_tx

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.

Type rfBudgetAnalyzer(rfb) command at the MATLAB® command line to visualiaze the RF
system in the RF Budget Analyzer app.

load rf_sys_mu_tx
open_system('rfs_mu_tx_chan');

 Massive MIMO Hybrid Beamforming with RF Impairments

8-203

Add behavior of each RF path of each RF chain

tx_out(1:m,1:prm.numTx,1:n) = complex(zeros(m,prm.numTx,n));

% Use 4 workers to handle each data stream for each user

parfor i = 1 : n
 for j = 1 : k
 tx_out(:,j,i) = step(rfs_mu_tx,txSigSTS(:,i));
 release(rfs_mu_tx);
 end
end

Apply the Analog Beamformers to the Output signal from the RF front end

delete(poolobj);
txsig_int(1:m,1:prm.numTx,1:n) = complex(zeros(m,prm.numTx,n));

for i = 1 : n
 for j = 1 : prm.numTx
 txsig_int(:,j,i) = tx_out(:,j,i)*mFrf(i,j);
 end
end
txsig = sum(txsig_int,3);

Parallel pool using the 'Processes' profile is shutting down.

For the selected, fully connected RF architecture, each antenna element uses prm.numSTS phase
shifters, as given by the individual columns of the mFrf matrix.

The processing for the data transmission and reception modeled is shown below.

8 RF Blockset Examples

8-204

Signal Propagation

The example offers an option for spatial MIMO channel and a simpler static-flat MIMO channel for
validation purposes.

The scattering model uses a single-bounce ray tracing approximation with a parametrized number of
scatterers. For this example, the number of scatterers is set to 100. The 'Scattering' option models
the scatterers placed randomly within a sphere around the receiver, similar to the one-ring model
[6].

The channel models allow path-loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear or rectangular geometry.

% Apply a spatially defined channel to the transmit signal

[rxSig,chanDelay] = helperApplyMUChannel(txsig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission. The data transmission has a
longer duration and is controlled by the number of data symbols parameter, prm.numDataSymbols.
The channel evolution between the sounding and transmission stages is modeled by prepending the
preamble signal to the data signal. The preamble primes the channel to a valid state for the data
transmission, and is ignored from the channel output.

For a multi-user system, independent channels per user are modeled.

Receive Amplification and Signal Recovery

The receiver modeled per user compensates for the path loss by amplification and adds thermal
noise. Like the transmitter, the receiver used in a MIMO-OFDM system contains many stages
including OFDM demodulation, MIMO equalization, QAM demapping, and channel decoding.

hfig = figure('Name','Equalized symbol constellation per stream');
scFact = ((prm.FFTLength-length(prm.NullCarrierIndices))...

 Massive MIMO Hybrid Beamforming with RF Impairments

8-205

 /prm.FFTLength^2)/numTx;
nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
decoder = comm.ViterbiDecoder('InputFormat','Unquantized', ...
 'TrellisStructure',poly2trellis(7, [133 171 165]), ...
 'TerminationMethod','Terminated','OutputDataType','double');

for uIdx = 1:prm.numUsers
 stsU = numSTSVec(uIdx);
 stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:stsU);

 % Front-end amplifier gain and thermal noise
 rxPreAmp = phased.ReceiverPreamp(...
 'Gain',spLoss(uIdx), ... % account for path loss
 'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
 rxSigAmp = rxPreAmp(rxSig{uIdx});

 % Scale power for occupied sub-carriers
 rxSigAmp = rxSigAmp*(sqrt(prm.FFTLength-length(prm.NullCarrierIndices)) ...
 /prm.FFTLength);

 % OFDM demodulation
 rxOFDM = ofdmdemod(rxSigAmp(chanDelay(uIdx)+1: ...
 end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
 prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
 prm.NullCarrierIndices,prm.PilotCarrierIndices);

 % Channel estimation from the mapped preamble
 hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

 % MIMO equalization
 % Index into streams for the user of interest
 [rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD(:,stsIdx,:));

 % Soft demodulation
 rxSymbs = rxEq(:)/sqrt(numTx);
 rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
 'OutputType','approxllr','NoiseVariance',nVar);

 % Apply CSI prior to decoding
 rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
 prm.numDataSymbols,stsU);
 csitmp = reshape(CSI,1,[],1,numSTSVec(uIdx));
 rxScaledLLR = rxLLRtmp.*csitmp;

 % Soft-input channel decoding
 rxDecoded = decoder(rxScaledLLR(:));

 % Decoded received bits
 rxBits = rxDecoded(1:prm.numFrmBits(uIdx));

 % Plot equalized symbols for all streams per user
 scaler = ceil(max(abs([real(rxSymbs(:)); imag(rxSymbs(:))])));
 for i = 1:stsU
 subplot(prm.numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
 plot(reshape(rxEq(:,:,i)/sqrt(numTx), [], 1), '.');
 axis square
 xlim(gca,[-scaler scaler]);

8 RF Blockset Examples

8-206

 ylim(gca,[-scaler scaler]);
 title(['U ' num2str(uIdx) ', DS ' num2str(i)]);
 grid on;
 end

 % Compute and display the EVM
 evm = comm.EVM('Normalization','Average constellation power', ...
 'ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation', ...
 qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',1));
 rmsEVM = evm(rxSymbs);
 disp(['User ' num2str(uIdx)]);
 disp([' RMS EVM (%) = ' num2str(rmsEVM)]);

 % Compute and display bit error rate
 ber = comm.ErrorRate;
 measures = ber(txDataBits{uIdx},rxBits);
 fprintf(' BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1),measures(3),measures(2));
end
toc

User 1
 RMS EVM (%) = 2.7924
 BER = 0.00000; No. of Bits = 6234; No. of errors = 0
User 2
 RMS EVM (%) = 2.3394
 BER = 0.00000; No. of Bits = 3114; No. of errors = 0
User 3
 RMS EVM (%) = 1.8391
 BER = 0.00000; No. of Bits = 3114; No. of errors = 0
Elapsed time is 508.345275 seconds.

 Massive MIMO Hybrid Beamforming with RF Impairments

8-207

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits per user.

rng(s); % restore RNG state

Conclusion and Further Exploration

The example highlights the use of hybrid beamforming for multi-user MIMO-OFDM systems. It allows
you to explore different system configurations for a variety of channel models by changing a few
system-wide parameters.

The set of configurable parameters includes the number of users, number of data streams per user,
number of transmit/receive antenna elements, array locations, and channel models. Adjusting these
parameters you can study the parameters' individual or combined effects on the overall system. As
examples, vary:

• the number of users, prm.numUsers, and their corresponding data streams, prm.numSTSVec, to
switch between multi-user and single-user systems, or

• the channel type, prm.ChanType, or
• the number of rays, prm.nRays, used for a single-user system.

Explore the following helper functions used by the example:

• helperApplyMUChannel.m

8 RF Blockset Examples

8-208

• helperArrayInfo.m
• helperGenPreamble.m
• helperGenPilots.m
• helperJSDMTransmitWeights.m
• helperMIMOChannelEstimate.m
• helperMIMOEqualize.m

References
[1] Molisch, A. F., et al. "Hybrid Beamforming for Massive MIMO: A Survey." IEEE® Communications

Magazine, Vol. 55, No. 9, September 2017, pp. 134-141.

[2] Li Z., S. Han, and A. F. Molisch. "Hybrid Beamforming Design for Millimeter-Wave Multi-User
Massive MIMO Downlink." IEEE ICC 2016, Signal Processing for Communications
Symposium.

[3] El Ayach, Oma, et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems." IEEE
Transactions on Wireless Communications, Vol. 13, No. 3, March 2014, pp. 1499-1513.

[4] Adhikary A., J. Nam, J-Y Ahn, and G. Caire. "Joint Spatial Division and Multiplexing - The Large-
Scale Array Regime." IEEE Transactions on Information Theory, Vol. 59, No. 10, October
2013, pp. 6441-6463.

[5] Shui, D. S., G. J. Foschini, M. J. Gans and J. M. Kahn. "Fading Correlation and its Effect on the
Capacity of Multielement Antenna Systems." IEEE Transactions on Communications, Vol. 48,
No. 3, March 2000, pp. 502-513.

See Also

Related Examples
• “RF Receiver Modeling for LTE Reception” on page 8-92
• “RF Impairments for 5G NR Downlink Waveforms” on page 8-262
• “PA and DPD Modeling for Dynamic EVM Measurement” on page 8-232

 Massive MIMO Hybrid Beamforming with RF Impairments

8-209

Speed Up PA and DPD simulation

This example shows how to simulate a power amplifier (PA) within a wireless communications system
and how to apply digital predistortion (DPD) to improve the transmitter linearity. The simulation
speed of the model is increased by using the Idealized Baseband library and hence increasing the
abstraction level of the model.

Idealized Baseband Library Model for Two Tones Input Signal

The first model of the RF system uses blocks from the RF Blockset™ Idealized Baseband library. With
this library an equivalent baseband modeling approach is adopted. Complex modulated signals
represent the transmitted information, assumed to be centered around an implicit carrier frequency.

The blocks from the Idealized Baseband library do not model out-of-band behavior or spurious
harmonics generated by nonlinear effects or interfering signals. Additionally, blocks from the
Idealized Baseband library do not model impedance mismatches and assume that all blocks are
perfectly matched to 50 ohms. As a result, RF models built with the Idealized Baseband library
simulate quickly.

The first testbench used for PA and DPD simulation generates two tones to test the PA with or without
DPD. In this case, test the model with a narrowband excitation. You can toggle the manual switch in
the simulation and verify that the overall IP3 performance of the system is improved.

Elapsed time is 3.689039 seconds.

8 RF Blockset Examples

8-210

Enable the DPD and verify the improvement on linearity.

Elapsed time is 3.093843 seconds.

To validate the fidelity of the model, compare it with an equivalent implementation built using blocks
from the Circuit Envelope library. In this case, multicarrier effects, second order nonlinearity, and
impedance mismatches are taken into account.

Elapsed time is 108.899604 seconds.

 Speed Up PA and DPD simulation

8-211

Enable the DPD and verify the improvement on linearity.

Elapsed time is 107.505567 seconds.

8 RF Blockset Examples

8-212

Results obtained with the two models are very similar, but the simulation speed of the idealized
baseband model is much faster.

Idealized Baseband Library Model for OFDM Input Signal

Test the Idealized Baseband library model using a modulated OFDM input signal. In this case, the
baseband signal has a bandwidth of 100 MHz. The simulation bandwidth of the model has been
increased by a factor of five to improve the capture of in-band effects (spectral regrowth) resulting
from nonlinearities. EVM is computed using the constellation diagram and ACLR using the spectrum
analyzer scope.

In this second testbench, test the RF system and its linearization with a wideband signal. Note that
the PA coefficients now represent a different device compared to the one used in the first testbench
and that the PA has been characterized for wideband operation.

Elapsed time is 2.774933 seconds.

 Speed Up PA and DPD simulation

8-213

Enable the DPD and verify the improvement on linearity.

Elapsed time is 2.115482 seconds.

8 RF Blockset Examples

8-214

Compare the results obtained with an equivalent model built using blocks from the Circuit Envelope
Library. In this case the effects of the antenna loading on the coupler and PA are taken into account.
These effects lead to additional differences when compared to the model built using blocks from the
Idealized Baseband Library.

Elapsed time is 349.242430 seconds.

 Speed Up PA and DPD simulation

8-215

8 RF Blockset Examples

8-216

Enable the DPD and verify the improvement on linearity.

Elapsed time is 370.167872 seconds.

 Speed Up PA and DPD simulation

8-217

See Also
Power Amplifier

Related Examples
• “Power Amplifier Characterization” on page 7-92

8 RF Blockset Examples

8-218

Model RF Systems with Antenna Arrays Using RF Blockset
Antenna Block

This example shows how to model MIMO receiving and transmitting RF systems including antenna
arrays. The design starts from the budget analysis of a single RF chain, and it is then extended to
multiple antennas. The RF Blockset Antenna block performs full-wave analysis of the antenna array,
enabling high-fidelity modeling of the effects and imperfections coupled with the simulation of the RF
system.

In the following sections, you design a MIMO receiver starting from its RF budget analysis. Then, you
design a transmitter and connect the two. As a final step, the models are used to transmit and receive
a wideband 100 MHZ OFDM signal, including beamsteering and clock recovery.

MIMO Receiver System

Design a MIMO receiver (RX) system starting with the budget analysis of a single antenna RF chain.
In this example, the input signal is centered around 35GHz, and it is generated by a transmitter (TX)
with effective isotropic radiated power (EIRP) equal to 20 dBm, located at a distance of 100
wavelengths away from the receiver.

TX_EIRP = 20;
CF = 35e9;
lambda = physconst('lightspeed')/CF; % Wavelength (1/m)
d = 100*lambda; % Distance between TX and RX antennas (m)

The RX array is made of eight dipole antennas located at a distance of half a wavelength from each
other.

arrayRXObj = design(linearArray, CF, dipole);
arrayRXObj.NumElements = 8;
arrayRXObj.show;

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-219

Assume that the TX antenna is similar to the RX antenna and located on the same elevation plane and
such that the direction of arrival is normal to the RX array axis.

DOA = 0;
Az_RX = 90-DOA; % Azimuth of direction of arrival
El_RX = 0; % Elevation of direction of arrival

First calculate the array gain using full-wave analysis, and then approximate the single antenna gain
to be equal to entire array gain divided by number of elements in the array, in this case 8.

GAntRX = pattern(arrayRXObj,CF,Az_RX,El_RX, 'Type','gain');
GSingleAntRX = GAntRX - 10*log10(8);

The next element in the receiver chain is a low noise amplifier. Calculate the input impedance of the
amplifier using its S-parameters interpolated at the center frequency. Note that the Touchstone file
also includes the noise data.

s_amp = sparameters('amplifier.s2p');
Zin = gamma2z(gammain(rfinterp1(s_amp,CF),50));

Next, compute the impedance of the first antenna element of the array using the impedance of the
amplifier determined at the previous step as load to the remaining antenna elements.

sp = sparameters(arrayRXObj,CF);
gammaInAnt1 = snp2smp(sp.Parameters,50,1,Zin);
ZAnt_RX = gamma2z(gammaInAnt1);

Calculate the free space path loss between the TX and RX.

8 RF Blockset Examples

8-220

PL = 20*log10(4*pi*d/lambda);

If the TX and RX are not perfectly aligned on the same array normal (DOA 0), the 8 received signals
have different phases. To coherently receive the transmitted signal, phase shifts are needed for
aligning the array beam with the direction of arrival of the received signal. The phase shift
beamformer object from Phased Array System Toolbox is used to compute the necessary phase shifts.

Beam_Az_RX = DOA; % Beamforming angle (deg)
beamformer = phased.PhaseShiftBeamformer(...
 'SensorArray',phased.ULA('NumElements',8,...
 'ElementSpacing', lambda/2), ...
 'OperatingFrequency',CF,...
 'Direction',[Beam_Az_RX; 0],...
 'WeightsOutputPort',true);
[~, phase_shifts_RX] = beamformer(ones(1,8));
phase_shifts_RX = angle(phase_shifts_RX)'/pi*180;

Define the third-order output intercept point in dBm of the first amplifier stage in the RX chain.

oIP3_RX = 25.5;

Include an additional amplifier stage to each chain in the RX system.

G_RX = zeros(1,8);

Build a cascade (row vector) of RF receiver elements:

• Antenna defined by gain and impedance, also including TX EIRP and path loss
• Low noise amplifier defined by S-parameters (including noise data) and OIP3
• IF Demodulator stage defined by gain and noise figure
• Additional amplifier stage
• Phase shifters for beamforming

% Antenna
elementsRX(1) = rfantenna(...
 'Type','Receiver', ...
 'Gain',GSingleAntRX, ...
 'Z',ZAnt_RX, ...
 'PathLoss',PL, ...
 'TxEIRP',TX_EIRP);
% Front-end amplifier
elementsRX(2) = amplifier(...
 'FileName','amplifier.s2p', ...
 'OIP3',oIP3_RX);
% Demodulator
elementsRX(3) = modulator(...
 'Name','Demodulator', ...
 'Gain',-3, ...
 'NF',8, ...
 'LO',CF-100e6, ...
 'ConverterType','Down');
% Additional amplifier
elementsRX(4) = amplifier(...
 'Gain',G_RX(1));
% Phase shifter:
elementsRX(5) = phaseshift(...
 'PhaseShift',phase_shifts_RX(1));

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-221

Construct an rfbudget object from the above elements at the command line.

b = rfbudget(...
 'Elements',elementsRX, ...
 'InputFrequency',CF, ...
 'SignalBandwidth',100e6, ...
 'Solver','Friis');

Type show(b) command at the command line to visualize the chain in the RF Budget Analyzer app.

Note that the Available input power, shown in the System parameters section of the app toolstrip, is
obtained by adding the transmitter EIRP, minus the path-loss plus the gain of the antenna.

Pav = TX_EIRP - PL + GSingleAntRX

Pav =

 -38.7648

Create RF Blockset Model for Receiving System

You can export the above cascade as an RF Blockset™ model and copy it to create an eight-chain RF
system. When simulating the MIMO RX system, the coupling between antenna elements are captured
by replacing the single antenna element used in the RF budget with a full antenna array. This is done
by using an Antenna block with the antenna array object arrayRXObj.

The input to the Antenna block is the received signal described as a normalized power wave split onto
the two polarization components. The received power wave, RX, is normalized such that the
total power is . The antenna elements in arrayRXObj, are z-directed dipoles.

8 RF Blockset Examples

8-222

Such an array creates a field that is polarized along the direction. Assuming that the TX antenna
array and the RX antenna array are of the same type, it can assume that the received signal is cast
along the polarization component.

pol = [-1;0];

The resulting RX MIMO model includes an antenna block connected to a subsystem RF Receiver
representing the RX system, including the eight chains:

model = 'simrfV2_RX_array';
open_system(model)
sim(model)

Note that the input signal is a three-dimensional array: the first dimension is used to frame data, the
second dimension is used for multi-carrier signals, and the third dimension is used to provide the two
polarization components.

Looking under the mask of the RF Receiver subsystem shows the structure of the multichain RF
system. Each chain ends with a phase shifter, such that when the signals are combined, the array
beam is aimed at the given direction of arrival. The signals are combined using inverted Wilkinson
power dividers.

open_system([model '/RF Receiver'],'force');

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-223

The power delivered at the input (Pin) and the output (Pout) of the first chain are measured in the
model and correspond approximately to the expected values. Pout is close to the value anticipated by
the analysis computed with the RF Budget Analyzer app as shown above. Pin is close to the delivered
power calculated using the antenna impedance matching efficiency, , as follows:

etaZ = 10*log10(1-abs((Zin-ZAnt_RX')/(Zin+ZAnt_RX))^2);
Pin_RX = Pav + etaZ

8 RF Blockset Examples

8-224

Pin_RX =

 -39.2521

The difference between the simulation results and the expected values computed with the budget
analysis are due the approximation of the gain of the antenna element in the single RX chain as the
gain of the antenna array divided by 8. This approximation ignores differences between the power
received by different antenna elements in a finite array.

Close the RX model and proceed to model the TX.

bdclose(model)

MIMO Transmitter System

Design a MIMO transmitter (TX) system starting with the budget analysis of a single antenna RF
chain. For MIMO transmitter system, assume an input power of -7.41 dBm and the same center
frequency as the receiver.

TX_Pin = -7.41; % Transmitter input power (dBm)
DOD = 180; % Direction of departure (deg)

Design the TX antenna to be identical to the RX antenna. The array orientation is such that the
direction of departure is normal to the array axis, and flipped by 180 degrees compared to the RX
antenna. While this rotation does not play an important role for the current array due to symmetry
along the z-axis, it might be important for other types of antennas.

arrayTXObj = design(linearArray, CF, dipole);
arrayTXObj.NumElements = 8;
arrayTXObj.TiltAxis = [0 0 1];
arrayTXObj.Tilt = 180;

The TX array is located on the same elevation plane as the RX antenna, and the direction of departure
is along the array normal.

Az_TX = 90-DOD; % Azimuth direction of departure
El_TX = 0; % Elevation of direction of departure

Calculate the TX antenna array gain using full-wave analysis.

GAntTX = pattern(arrayTXObj,CF,Az_TX,El_TX, 'Type','gain');

The last stage of the TX before the antenna is a power amplifier with input and output impedance
equal to 50 Ohm. Calculate the antenna impedance of the first chain of the transmitter.

Zout = 50;
sp = sparameters(arrayTXObj,CF);
gammaInAnt1 = snp2smp(sp.Parameters,50,1,Zout);
ZAnt_TX = gamma2z(gammaInAnt1);

If the TX and RX are not perfectly aligned on the same array normal (DOD 0), the 8 transmitted
signals have different phases. To make sure that the transmitter steer the beam towards the receiver,
phase shifts are used. Use the phase shift beamformer object from Phased Array System Toolbox to
calculate the phase shifts needed for aligning the array beam with direction of arrival of the received
signal.

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-225

Beam_Az_TX = DOD; % Beamforming angle (deg)
beamformer = phased.PhaseShiftBeamformer(...
 'SensorArray',phased.ULA('NumElements',8,...
 'ElementSpacing', lambda/2), ...
 'OperatingFrequency',CF,...
 'Direction',[Beam_Az_TX; 0],...
 'WeightsOutputPort',true);
[~, phase_shifts_TX] = beamformer(ones(1,8));
phase_shifts_TX = angle(phase_shifts_TX)'/pi*180;

Define the gain and third order non-linearity of the power amplifier. Add a fixed gain to each element
in the TX antenna array, and define the third-order output intercept point in dBm.

G_TX = 18.6*ones(1,8); % dB
oIP3_TX = 30; % 3rd order output intercept point (dBm)

Build a cascade (row vector) of RF transmitter elements:

• Phase shifters for beamforming
• IF Modulator stage defined by gain and noise figure
• Power amplifier defined by gain and OIP3
• Antenna defined by gain and impedance

% Phase shifter
elementsTX(1) = phaseshift(...
 'PhaseShift',phase_shifts_TX(1));
% Modulator
elementsTX(2) = modulator(...
 'Name','Modulator', ...
 'Gain',-3, ...
 'NF',8, ...
 'LO',CF-100e6, ...
 'ConverterType','Up');
% Power amplifier
elementsTX(3) = amplifier(...
 'Gain',G_TX(1), ...
 'OIP3',oIP3_TX);
% Antenna
elementsTX(4) = rfantenna(...
 'Type','Transmitter', ...
 'Gain',GAntTX, ...
 'Z',ZAnt_TX);

Construct the TX rfbudget object:

b = rfbudget(...
 'Elements',elementsTX, ...
 'InputFrequency',100e6, ...
 'AvailableInputPower', TX_Pin - 10*log10(8), ...
 'SignalBandwidth',100e6, ...
 'Solver','Friis');

Type show(b) command at the command line to visualize the TX chain in the RF Budget Analyzer
app.

8 RF Blockset Examples

8-226

Note that the available input power is the input to the transmitter divided by 8, due to the 8-way
splitter in front of the eight chains. Also, the antenna element in the budget is approximated as
having the gain of the array. This assumption allows adding the EIRP values from each chain to obtain
the total EIRP of the system:

TX_EIRP = b.EIRP + 10*log10(8)

TX_EIRP =

 20.2147

Create RF Blockset Model for Transmitting System

Similarly to the receiving system, the above TX cascade can be exported as an RF Blockset model and
copied to create an eight-chain RF system, with the 8 individual antennas replaced by a single
antenna array. The output of the Antenna block is the transmitted signal, TX, which is described as a
power wave split onto the two polarization components and is normalized such that the total
transmitted power is equal to . You can now confirm the previous assumption that
most of the transmitted (and received) power is aligned with the polarization component.

model = 'simrfV2_TX_array';
open_system(model)
sim(model)

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-227

The total normalized transmitted power is equal to the EIRP value of 20 dBm, as anticipated by the
budget analysis.

Close the TX model and proceed to combine together the TX and RX.

bdclose(model)

Combine TX and RX systems in Single Model

To account for the entire communication link behavior, you can combine the two systems above into a
single model. The output of the transmitting antenna is connected to the input of the receiving
antenna through a gain block representing the ideal path loss between the antennas. A more complex
channel model, for example including fading effects, can be used.

model = 'simrfV2_TXRX_arrays';
open_system(model)
sim(model)

The far-field interaction between the TX and RX is captured using the signal propagating between the
two arrays, and the effect of changes both in the RF systems (such as beam-steering phase shift
changes, or impedance matching) and in the antennas (such as change of orientation, elements, or
the entire antenna array altogether) is fully accounted for.

As an example, change the TX array while keeping the RX array as above. Specifically, rotate the
transmitting antenna so that the array axis is set along the z-axis and the dipoles are oriented parallel
to the x-axis. With this rotation, the TX power only radiates in the polarization, orthogonal to the
polarization component of the RX antenna. This can be validated by re-designing the TX antenna
array with the following commands and simulating the TX+RX model.

8 RF Blockset Examples

8-228

arrayTXObj = design(linearArray, CF, dipole);
arrayTXObj.NumElements = 8;
% Rotate antenna array so that array axis is set along z-axis:
arrayTXObj.TiltAxis = [0 1 0];
arrayTXObj.Tilt = 90;
% Antenna should be presolved before reusing in block
sp = sparameters(arrayTXObj,CF);

While the EIRP of the transmitter remains at a level of 20 dBm, rerunning the simulation of the full
communication link shows a received power of -188.3 dBm due to the strong polarization mismatch.

Close the combined TX and RX model and proceed to perform a time domain simulation of the
system.

bdclose(model)

Time Domain Simulation of Combined TX and RX System

All the above models perform static analysis (Harmonic Balance) on the RF systems. However, these
models can easily be extended to simulate the time domain performance of the system. Previously, the
antenna performance was calculated at a single frequency point. To capture the time domain
behavior of the antennas, recalculate the antenna S-parameters over a band that encompasses the
simulation band around the central frequency.

spRX = sparameters(arrayRXObj,linspace(CF-100e6, CF+100e6, 31));
spTX = sparameters(arrayTXObj,linspace(CF-100e6, CF+100e6, 31));

Note that the new antenna calculation results are kept within the antenna objects and used by the
Antenna Blocks to estimate their temporal behavior within the simulation band.

The time domain simulation is carried out in a new model that has the same structure as the previous
model. However, the signal being transmitted is now an OFDM waveform, rather than a single tone
signal. In addition, the received signal coming out of the RF Receiver is now measured using a
spectrum analyzer and goes into a Baseband receiver subsystem that performs baseband
demodulation and computes the EVM and MER of the received OFDM waveform.

model = 'simrfV2_TXRX_OFDM2';
open_system(model)
sim(model)

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-229

Part of the measured EVM can be attributed to distortion due to the frequency dependent antenna
impedance and pattern. The Antenna block allows control over the modeling of these quantities via
parameters in the Modeling pane of the Mask Parameters dialog box of the block:

8 RF Blockset Examples

8-230

The choice of 'Time domain (rationalfit)' in the Modeling options creates an analytical rational model
that approximates the antenna parameters within the entire frequency range of the simulation. The
modeling choices for the Antenna block are similar to the modeling choices in other RF Blockset
blocks such as the S-Parameter block. However, for the antenna block there are two separate
quantities that require modeling: Antenna impedance and Normalized vector effective length. The
modeling pane indicates the number of poles used and relative error achieved for each of those
quantities.

bdclose(model)
clear model

See Also
Antenna

 Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block

8-231

PA and DPD Modeling for Dynamic EVM Measurement

This example shows how to use input and output modulated waveforms to extract a generalized
memory polynomial model of a power amplifier (PA). You use a PA model to measure the PA dynamic
error vector magnitude (EVM) using a standard-compliant 5G NR test model waveform, as defined in
TS 38.141-1. You also measure the EVM in different operating conditions using digital predistortion
(DPD).

The waveforms have been measured using Rohde & Schwarz instruments R&S®SMW200A and
R&S®FSW. For more information, see Linearization of RF Amplifiers: Connecting simulation and
measurements on physical devices.

This example guides you step-by-step through all the operations required to extract a PA model using
measured data, verify the quality of the fitting, and simulate such model using Circuit Envelope
blocks with and without DPD. Overview of this example as follows:

• Import the PA characterization data. This example uses two different input/output complex
modulated waveforms measured in different conditions to extract and verify the quality of the PA
model.

• Visualize the characterization data in different domains to make it suitable for fitting a memory
polynomial PA model. The data might need manipulation, such as adjusting the input/output
timing alignment. In this case, filter the data to reduce the characterization bandwidth.

• Identify the PA model coefficients matrix using the characterization waveform with the largest
dynamic range and then verify the quality of the fitting using the second waveform. At this stage,
you can experiment by changing the harmonic order and memory depth of the model.

• Define a simple RF Blockset circuit envelope testbench to verify that the extracted PA model is
correctly configured for time domain simulation. This step is necessary to make sure that the
simulation set up uses the desired port definition and time step.

• Define a 5G Toolbox testbench to generate a 5G standard compliant waveform and measure the
EVM and then integrate the RF Blockset circuit envelope model of the PA in this testbench using
the rfsystem workflow.

• Run the 5G EVM testbench with and without DPD algorithm in the loop and visualize results.

Read PA Input/Output Characterization Data

This data file collects the PA input and output waveforms measured using Rohde&Schwarz vector
signal generator R&S®SMW200A in conjunction with the vector signal analyzer R&S®FSW. The file
includes four different complex waveforms, measured at 2.6 GHz, with a sample time of 1.6276 ns.

The four waveforms provide two different sets of input/output characterization data. The first set
(reference) is measured using a standard compliant 5G waveform. The second set is measured using
a predistorted waveform generated by the R&S set up. This excitation waveform is created using the
iterative direct DPD approach, and it provides a measure of the PA linearized performance that can
be achieved in the field. In this example, we use one of these two sets of waveforms to extract the PA
model, and the second to verify the quality of the fitting.

• iq_in — original PA input data (reference)
• iq_out — original PA output data (no DPD active)
• iq_in_dpd — predistorted PA input signal (iterative direct DPD)

8 RF Blockset Examples

8-232

https://www.rohde-schwarz.com/applications/linearization-of-rf-amplifiers-application-note_56280-1110210.html
https://www.rohde-schwarz.com/applications/linearization-of-rf-amplifiers-application-note_56280-1110210.html

• iq_out_dpd — PA output signal using pre-distorted input signal

load('K18m_PA_Data.mat');

Plot Spectrum of PA Characterization Data

Plot the spectrum of the data used to characterize the PA. You can see the effects of the filtering
introduced by the measurement setup at the edges of the signal.

SpectAnalyzer = spectrumAnalyzer;
SpectAnalyzer.SampleRate = fs;
SpectAnalyzer.ShowLegend = true;
SpectAnalyzer.SpectralAverages = 32;
SpectAnalyzer.ReferenceLoad = 50;
SpectAnalyzer.RBWSource= "Property";
SpectAnalyzer.RBW = 1e5;
SpectAnalyzer.OverlapPercent = 50;
SpectAnalyzer([iq_in, iq_out, iq_out_dpd]);
SpectAnalyzer.ChannelNames = {'PA_in','PA_out','PA_out_w/DPD'};

Apply Resampling Filter to Remove Filter Effects

Apply a digital multirate FIR filter to resample the data and remove the effects of filtering introduced
by the measurement setup. This step is recommended to improve the quality of the fitting of the PA
model.

 PA and DPD Modeling for Dynamic EVM Measurement

8-233

Set the filter parameters starting with the number of filter taps, interpolation and decimation factors,
and overall length of the filter delay in number of samples.

filtLength = 48*2;
I = 6;
D = 8;
N = ceil(filtLength*((I/D)+1));

Compute the oversampling factor and sample time of the resampled waveforms.

ovs = I/D;
Tstep = 1/fs/ovs;

Create a filter object with the given parameters.

FIR_bw = designMultirateFIR(I,D,filtLength,'SystemObject',true);

Apply the filter to all four characterization waveforms.

inDataPA1 = FIR_bw(iq_in);
inDataPA2 = FIR_bw(iq_in_dpd);
outDataPA1 = FIR_bw(iq_out);
outDataPA2 = FIR_bw(iq_out_dpd);

Remove the filter transient at the beginning of the waveforms and store the data in two matrices:one
for the input waveforms, and one for the output waveforms. The first column in both matrices
represents the original data, and the second column represents the data measured using the iterative
direct DPD approach.

in(:,1) = inDataPA1(N:end);
in(:,2) = inDataPA2(N:end);
out(:,1) = outDataPA1(N:end);
out(:,2) = outDataPA2(N:end);
numDataPts = length(in(:,1));

Plot PA Waveforms in Time and Frequency Domain

Visualize the input and output characterization data with and without iterative direct DPD.

In the figures below, you plot the first 500 ns of data. The data is well aligned in time, and the effects
of nonlinearity are barely visible on the peaks of the output signals. For direct comparison you
multiply the data times the PA gain.

g = 10^(g0/20);
for i = 1:2
 figure;
 plot((1:numDataPts)*Tstep, abs(in(:,i))*g, ...
 (1:numDataPts)*Tstep, abs(out(:,i)))
 legend('Abs(In)','Abs(Out)','Location','northeast')
 xlabel('Time (s)')
 xlim([0 0.5e-6]); ylim([0 2.1]);
 ylabel('Voltage (V)')
 if i==1
 title('Absolute Values of Original Input/Output Voltage Signals');
 else
 title('Absolute Values of Input/Output Voltage Signals with Direct DPD');
 end
end

8 RF Blockset Examples

8-234

 PA and DPD Modeling for Dynamic EVM Measurement

8-235

Also, plot the power gain transfer function. This plot is helpful to visualize memory effects as well as
the PA nonlinearity. The power transfer function of a perfectly linear device without any memory
effect is a straight line, so any deviation from it is due to nonidealities. From the comparison of the
two plots, you can verify that the characterization data measured with the iterative direct DPD
approach has a larger dynamic range.

for i = 1:2
 figure;
 TransferPA = abs(out(:,i)./in(:,i));
 plot(abs(in(:,i)),20*log10(TransferPA),'.');
 xlabel('Input Voltage Absolute Value(V)')
 ylabel('Magnitude Power Gain (dB)')
 if i==1
 title('Power Gain Transfer Function')
 else
 title('Power Gain Transfer Function with Direct DPD')
 end
end

8 RF Blockset Examples

8-236

 PA and DPD Modeling for Dynamic EVM Measurement

8-237

Plot the power spectrum of the output signal and verify that the resampling filter delivers the desired
results. The characterization data can be used to identify a memory polynomial model. With the given
measurement bandwidth, you can capture the spectral regrowth up to the fifth order of nonlinearity.

SpectAnalyzer = spectrumAnalyzer;
SpectAnalyzer.SampleRate = fs*ovs;
SpectAnalyzer.ShowLegend = true;
SpectAnalyzer.SpectralAverages = 32;
SpectAnalyzer.ReferenceLoad = 50;
SpectAnalyzer.RBWSource= "Property";
SpectAnalyzer.RBW = 1e5;
SpectAnalyzer.OverlapPercent = 50;
SpectAnalyzer(out(:,1:2));
SpectAnalyzer.ChannelNames = {'PA_out','PA_out_w/DPD'};

8 RF Blockset Examples

8-238

Determine PA Model Coefficient Matrix from Measured Input/Output Signals

Identify a generalized memory polynomial model, using a memory length of five and a degree of
nonlinearity of three

memLen = 5;
degLen = 3;
modType = 'memPoly';

To compute the model coefficient matrix, use a predistorted waveform as it has a larger dynamic
range. The coefficient matrix is used to verify the quality of the fitted model.

fitCoefMat = helperPACharMemPolyModel('coefficientFinder', in(:,2), out(:,2), ...
 memLen,degLen,modType);
% Alternatively, you can use a subset of the data range to fit the model
% fitCoefMat = helperPACharMemPolyModel('coefficientFinder', in(14e4:15e4,2), out(14e4:15e4,2), ...
% memLen,degLen,modType);

Verify the quality of the PA model by computing the RMS error of the fitting, as well as plotting the
fitted and measured waveforms in the time domain, the power transfer function, the spectrum, and
the ACLR spectral measurement.

First, verify the quality of the fitted model by comparing the measurement and the prediction using
the original data.

helperPAVerifyMemPolyModel(in(:,1), out(:,1), fitCoefMat, modType, fs*ovs);

 PA and DPD Modeling for Dynamic EVM Measurement

8-239

Signal standard deviation = 7.8385%
ACPR data = -36.9763 -37.6772
ACPR fit = -36.9763 -37.6772

8 RF Blockset Examples

8-240

 PA and DPD Modeling for Dynamic EVM Measurement

8-241

Then, verify the quality of the model using the measured data with the iterative direct DPD approach.
This data has also been used to identify the PA model.

helperPAVerifyMemPolyModel(in(:,2), out(:,2), fitCoefMat, modType, fs*ovs);

Signal standard deviation = 3.3434%
ACPR data = -38.0929 -38.5962
ACPR fit = -38.5555 -38.8375

8 RF Blockset Examples

8-242

 PA and DPD Modeling for Dynamic EVM Measurement

8-243

8 RF Blockset Examples

8-244

Finally, save the PA model and relevant parameters for later use.

close all;
save('PA_model', 'Tstep','degLen','memLen','modType','fitCoefMat', 'g0');

Use PA Model for Simulink Circuit Envelope Simulation

This simple Simulink testbench shows how to use the PA model for circuit envelope simulation and
compare the predicted results with the characterization data. The top branch uses the PA original
characterization data, while the bottom branch uses the PA data including the iterative direct DPD
linearization. The spectrum analyzer directly compares the measured and predicted waveforms, and
additionally shows the spectrum of the difference between the two.

model = 'verificationPA';
open_system(model)
sim(model,numDataPts*Tstep/3);

 PA and DPD Modeling for Dynamic EVM Measurement

8-245

8 RF Blockset Examples

8-246

This second Simulink testbench shows how to linearize the PA model, including an adaptive digital
predistortion algorithm. The output signal is compared with the measured waveforms including
iterative direct DPD and the original data.

model = 'DPD';
open_system(model)
sim(model,numDataPts*Tstep/3);

 PA and DPD Modeling for Dynamic EVM Measurement

8-247

Setup 5G NR PDSCH Waveforms for EVM Measurement

Measure the PA 3GPP dynamic EVM with and without DPD. The EVM is measured as defined in TS
38.104, Annex B(FR1) / Annex C(FR2).

The GenerateNRTMWaveform script generates a standard-compliant 5G NR test model 3.1 (NR-
TM3.1) waveform for frequency range 1 (FR1), as defined in TS 38.141-1. To generate a different NR
test model, open the 5G Waveform Generator (5G Toolbox) app, choose your preferred
configuration and click on Export MATLAB script.

GenerateNRTMWaveform

% Set the simulation parameters.
targetRNTIs = [];
displayEVM = true;
plotEVM = true;
evm3GPP = true;

8 RF Blockset Examples

8-248

Increase the amplitude of the input signal to excite the PA nonlinearity. At this stage, make sure that
the input signal is within the characterization range of the PA model.

txWaveform_5G = waveform*9;
disp(['Maximum input voltage = ' num2str(max(abs(txWaveform_5G)))])

Maximum input voltage = 0.51318

As the 5G signal has a sample rate that is different from the one used for the PA characterization, you
need to interpolate the signal like before. Here you create an interpolation filter to increase the
simulation bandwidth.

[I,D] = rat((1/info.ResourceGrids.Info.SampleRate)/Tstep);
filtLength = 120;
FIR_tx = designMultirateFIR(I,D,filtLength,180,'SystemObject',true);
N1 = ceil(filtLength*(I/D))+1;

Apply the filter to the 5G baseband waveform.

txWaveform_RF = FIR_tx(txWaveform_5G);

Load the RF system object and inspect the associated Simulink model with PA and DPD. For more
information see, rfsystem.

load RF_system;
open_system(rf_dpd)

 PA and DPD Modeling for Dynamic EVM Measurement

8-249

Simulate PA Model with 5G Waveforms

First simulate the PA model without DPD. Make sure that the manual switch is set in the up position.
This simulation takes a few minutes as it is actually testing one entire frame (10 ms) of 5G data.

set_param('rf_dpd_model/switch','sw','1')
rxWaveform_RF = rf_dpd(txWaveform_RF);

As a second step, simulate the PA including DPD by toggling the manual switch towards the down
position.

set_param('rf_dpd_model/switch','sw','0')
rxWaveform_DPD = rf_dpd(txWaveform_RF);

Compare the results by visualizing the output waveforms with and without DPD.

First, visualize results in the time domain.

figure; hold on
plot((1:length(rxWaveform_RF))*Tstep, abs(rxWaveform_RF));
plot((1:length(rxWaveform_RF))*Tstep, abs(rxWaveform_DPD));
legend('Output without DPD','Ouput with DPD','Location','northeast')
xlabel('Time (s)')
xlim([1e-6 2e-6])
ylabel('Voltage (V)')
title('Absolute Values of Input and Output Voltage Signals');

8 RF Blockset Examples

8-250

Second, visualize the power gain transfer function.

figure; hold on;
TransferPA = abs(rxWaveform_RF./txWaveform_RF);
plot(abs(txWaveform_RF), 20*log10(TransferPA), 'o')
TransferPA_dpd = abs(rxWaveform_DPD./txWaveform_RF);
plot(abs(txWaveform_RF), 20*log10(TransferPA_dpd), '.')
ylim([0 40])
xlabel('Input Voltage Absolute Value(V)')
ylabel('Magnitude Power Gain (dB)')
title('Power Gain Transfer Function')
legend({'Output without DPD', 'Ouput with DPD'})

 PA and DPD Modeling for Dynamic EVM Measurement

8-251

Finally, plot the spectrum of the output signals.

SpectAnalyzer = spectrumAnalyzer;
SpectAnalyzer.SampleRate = 1/Tstep;
SpectAnalyzer.ShowLegend = true;
SpectAnalyzer.ChannelNames = {'Output without DPD', 'Ouput with DPD'};
SpectAnalyzer.RBWSource ="Property";
SpectAnalyzer.RBW = 1e5;
SpectAnalyzer.SpectralAverages = 32;
SpectAnalyzer.ReferenceLoad = 50;
SpectAnalyzer([rxWaveform_RF rxWaveform_DPD]);

8 RF Blockset Examples

8-252

Before computing the EVM, you need to decimate the output waveforms. Create a decimation filter to
resample the signals with the original sample time.

FIR_rx = designMultirateFIR(D,I,filtLength,180,'SystemObject',true);
N2 = ceil(filtLength*(D/I))+1;

Apply the decimation filter to the output waveforms and remove the transient introduced by the filter.

M = floor(length(rxWaveform_RF)/I);
rxWaveform_5G = FIR_rx(rxWaveform_RF(1:M*I));
rxWaveform_5G = rxWaveform_5G(N2:end);
rxWaveform_5G_DPD = FIR_rx(rxWaveform_DPD(1:M*I));
rxWaveform_5G_DPD = rxWaveform_5G_DPD(N2:end);

Perform 3GPP Dynamic EVM Measurements

The helper function hNRPDSCHEVM, performs these steps to decode and analyze the waveform:

• Synchronization using the DM-RS over one frame for FDD (two frames for TDD)
• OFDM demodulation of the received waveform
• Channel estimation
• Equalization
• PDSCH EVM computation (enable the switch evm3GPP, to process according to the EVM

measurement requirements specified in TS 38.104, Annex B(FR1) / Annex C(FR2))

 PA and DPD Modeling for Dynamic EVM Measurement

8-253

The example measures and outputs various EVM related statistics (that is per symbol, per slot, and
per frame peak EVM and RMS EVM). The example displays EVM for each slot and frame on the
command window. It also displays the overall EVM averaged over the entire input waveform. The
example produces a number of plots: EVM versus per OFDM symbol, slot, subcarrier, and overall
EVM. Each plot displays the peak versus the RMS EVM.

Compute and display EVM measurements for the waveform without DPD.

cfg = struct();
cfg.Evm3GPP = evm3GPP;
cfg.TargetRNTIs = targetRNTIs;
cfg.PlotEVM = plotEVM;
cfg.DisplayEVM = displayEVM;
cfg.Label = cfgDLTM.Label;
[evmGrid,eqSym,refSym] = hNRPDSCHEVM(cfgDLTM,rxWaveform_5G,cfg);

EVM stats for BWP idx : 1
Low edge RMS EVM, Peak EVM, slot 0: 1.207 3.898%
High edge RMS EVM, Peak EVM, slot 0: 1.207 3.898%
Low edge RMS EVM, Peak EVM, slot 1: 1.306 4.950%
High edge RMS EVM, Peak EVM, slot 1: 1.306 4.960%
Low edge RMS EVM, Peak EVM, slot 2: 1.333 4.309%
High edge RMS EVM, Peak EVM, slot 2: 1.333 4.302%
Low edge RMS EVM, Peak EVM, slot 3: 1.261 4.269%
High edge RMS EVM, Peak EVM, slot 3: 1.261 4.291%
Low edge RMS EVM, Peak EVM, slot 4: 1.228 3.836%
High edge RMS EVM, Peak EVM, slot 4: 1.228 3.824%
Low edge RMS EVM, Peak EVM, slot 5: 1.256 4.080%
High edge RMS EVM, Peak EVM, slot 5: 1.256 4.019%
Low edge RMS EVM, Peak EVM, slot 6: 1.280 4.414%
High edge RMS EVM, Peak EVM, slot 6: 1.279 4.413%
Low edge RMS EVM, Peak EVM, slot 7: 1.211 4.268%
High edge RMS EVM, Peak EVM, slot 7: 1.210 4.287%
Low edge RMS EVM, Peak EVM, slot 8: 1.219 3.971%
High edge RMS EVM, Peak EVM, slot 8: 1.219 3.960%
Low edge RMS EVM, Peak EVM, slot 9: 1.247 4.275%
High edge RMS EVM, Peak EVM, slot 9: 1.247 4.282%
Low edge RMS EVM, Peak EVM, slot 10: 1.246 4.072%
High edge RMS EVM, Peak EVM, slot 10: 1.246 4.027%
Low edge RMS EVM, Peak EVM, slot 11: 1.280 4.044%
High edge RMS EVM, Peak EVM, slot 11: 1.280 4.036%
Low edge RMS EVM, Peak EVM, slot 12: 1.245 4.222%
High edge RMS EVM, Peak EVM, slot 12: 1.245 4.229%
Low edge RMS EVM, Peak EVM, slot 13: 1.359 5.075%
High edge RMS EVM, Peak EVM, slot 13: 1.359 5.068%
Low edge RMS EVM, Peak EVM, slot 14: 1.272 4.397%
High edge RMS EVM, Peak EVM, slot 14: 1.272 4.384%
Low edge RMS EVM, Peak EVM, slot 15: 1.238 4.216%
High edge RMS EVM, Peak EVM, slot 15: 1.237 4.219%
Low edge RMS EVM, Peak EVM, slot 16: 1.244 4.400%
High edge RMS EVM, Peak EVM, slot 16: 1.244 4.382%
Low edge RMS EVM, Peak EVM, slot 17: 1.274 4.360%
High edge RMS EVM, Peak EVM, slot 17: 1.274 4.364%
Low edge RMS EVM, Peak EVM, slot 18: 1.253 4.406%
High edge RMS EVM, Peak EVM, slot 18: 1.253 4.411%
Averaged overall RMS EVM: 1.262%
Overall Peak EVM = 5.0746%

8 RF Blockset Examples

8-254

 PA and DPD Modeling for Dynamic EVM Measurement

8-255

8 RF Blockset Examples

8-256

Compute and display EVM measurements for the waveform with DPD.

cfg = struct();
cfg.Evm3GPP = evm3GPP;
cfg.TargetRNTIs = targetRNTIs;
cfg.PlotEVM = plotEVM;
cfg.DisplayEVM = displayEVM;
cfg.Label = cfgDLTM.Label;
[evmGrid_DPD,eqSym_DPD,refSym_DPD] = hNRPDSCHEVM(cfgDLTM,rxWaveform_5G_DPD,cfg);

EVM stats for BWP idx : 1
Low edge RMS EVM, Peak EVM, slot 0: 0.349 1.383%
High edge RMS EVM, Peak EVM, slot 0: 0.349 1.365%
Low edge RMS EVM, Peak EVM, slot 1: 0.690 2.984%
High edge RMS EVM, Peak EVM, slot 1: 0.690 3.037%
Low edge RMS EVM, Peak EVM, slot 2: 0.551 2.102%
High edge RMS EVM, Peak EVM, slot 2: 0.551 2.091%
Low edge RMS EVM, Peak EVM, slot 3: 0.925 4.299%
High edge RMS EVM, Peak EVM, slot 3: 0.924 4.300%
Low edge RMS EVM, Peak EVM, slot 4: 0.339 1.510%
High edge RMS EVM, Peak EVM, slot 4: 0.337 1.536%
Low edge RMS EVM, Peak EVM, slot 5: 0.460 2.244%
High edge RMS EVM, Peak EVM, slot 5: 0.460 2.244%
Low edge RMS EVM, Peak EVM, slot 6: 0.583 2.659%
High edge RMS EVM, Peak EVM, slot 6: 0.583 2.646%
Low edge RMS EVM, Peak EVM, slot 7: 0.333 1.226%
High edge RMS EVM, Peak EVM, slot 7: 0.333 1.252%
Low edge RMS EVM, Peak EVM, slot 8: 0.312 1.261%

 PA and DPD Modeling for Dynamic EVM Measurement

8-257

High edge RMS EVM, Peak EVM, slot 8: 0.310 1.182%
Low edge RMS EVM, Peak EVM, slot 9: 0.371 1.286%
High edge RMS EVM, Peak EVM, slot 9: 0.371 1.303%
Low edge RMS EVM, Peak EVM, slot 10: 0.405 1.752%
High edge RMS EVM, Peak EVM, slot 10: 0.405 1.768%
Low edge RMS EVM, Peak EVM, slot 11: 0.665 2.747%
High edge RMS EVM, Peak EVM, slot 11: 0.664 2.749%
Low edge RMS EVM, Peak EVM, slot 12: 0.456 2.024%
High edge RMS EVM, Peak EVM, slot 12: 0.455 2.000%
Low edge RMS EVM, Peak EVM, slot 13: 0.733 4.093%
High edge RMS EVM, Peak EVM, slot 13: 0.734 4.034%
Low edge RMS EVM, Peak EVM, slot 14: 0.380 1.718%
High edge RMS EVM, Peak EVM, slot 14: 0.379 1.718%
Low edge RMS EVM, Peak EVM, slot 15: 0.354 1.405%
High edge RMS EVM, Peak EVM, slot 15: 0.354 1.447%
Low edge RMS EVM, Peak EVM, slot 16: 0.329 1.247%
High edge RMS EVM, Peak EVM, slot 16: 0.328 1.249%
Low edge RMS EVM, Peak EVM, slot 17: 0.591 2.447%
High edge RMS EVM, Peak EVM, slot 17: 0.591 2.505%
Low edge RMS EVM, Peak EVM, slot 18: 0.364 1.412%
High edge RMS EVM, Peak EVM, slot 18: 0.363 1.369%
Averaged overall RMS EVM: 0.512%
Overall Peak EVM = 4.2987%

8 RF Blockset Examples

8-258

 PA and DPD Modeling for Dynamic EVM Measurement

8-259

Helper Functions

Explore the following helper functions used by this example:

• helperPACharMemPolyModel.m
• helperPAVerifyMemPolyModel.m
• hListTargetPDSCHs.m
• hSlotResourcese.m
• hChannelEstimateEVM3GPP.m
• hEVM.m
• hEVMPlots.m
• hRawEVM.m
• hNRPDSCHEVM.m

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. "A

Generalized Memory Polynomial Model for Digital Predistortion of Power Amplifiers." IEEE
Transactions on Signal Processing 54, no. 10 (October 2006): 3852–60. https://doi.org/
10.1109/TSP.2006.879264.

[2] Gan, Li, and Emad Abd-Elrady. "Digital Predistortion of Memory Polynomial Systems Using Direct
and Indirect Learning Architectures." In Proceedings of the Eleventh IASTED International

8 RF Blockset Examples

8-260

Conference on Signal and Image Processing (SIP) ed. F. Cruz-Roldán and N. B. Smith, No.
654-802. Calgary, AB: ACTA Press, 2009.

[3] Lörner Markus, Florian Ramian, and Giorgia Zucchelli. "Linearization of RF amplifiers."
Application note. Version 1e.09.2021. https://www.rohde-schwarz.com/us/applications/
linearization-of-rf-amplifiers-application-note_56280-1110210.html.

[4] 3GPP TS 38.141-1. "NR; Base Station (BS) conformance testing Part 1: Conducted conformance
testing." 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network.

See Also
Power Amplifier

Related Examples
• “RF Receiver Modeling for LTE Reception” on page 8-92
• “Massive MIMO Hybrid Beamforming with RF Impairments” on page 8-196
• “RF Impairments for 5G NR Downlink Waveforms” on page 8-262

 PA and DPD Modeling for Dynamic EVM Measurement

8-261

https://www.rohde-schwarz.com/us/applications/linearization-of-rf-amplifiers-application-note_56280-1110210.html
https://www.rohde-schwarz.com/us/applications/linearization-of-rf-amplifiers-application-note_56280-1110210.html

RF Impairments for 5G NR Downlink Waveforms

This example shows how to generate a 5G new radio (NR) downlink waveform with full band
allocation. This example also shows how to model RF impairments and compute and visualize the
error vector magnitude (EVM) of the generated waveform. The generated waveform contains the
physical downlink shared channel (PDSCH) channel and its associated DM-RS signal, and the
physical downlink control channel (PDCCH).

Main Parameters

Use this suggested settings as a guide for setting up the parameters of the 5G Waveform as it
provides information for subcarrier spacing, number of resource blocks as a function of bandwidth
and subcarrier spacing as well as parameters for FR1 and FR2 carriers.

Suggested settings with transform precoding off for frequency range (FR1) (*)

BW(MHz) 5 10 15 20 25 30 40 50 60 80 90 100

NRB @15kHz 25 52 79 106 133 160 216 270

NRB @30kHz 11 24 38 51 65 78 106 133 162 217 245 273

NRB @60kHz 11 18 24 31 38 51 65 79 107 121 135

Suggested settings with transform precoding off for FR2 (*)

BW(MHz) 50 100 200 400

NRB @60kHz 66 128 264

NRB @120kHz 32 66 128 264

(*) Based on reference measurement channels from TS 38.101-1 and TS 38-101-2 Annex A2.3

Waveform and Carrier Configuration

Use the nrDLCarrierConfig object to configure the parameters needed for 5G NR downlink carrier
waveform generation. This section sets parameters such as the subcarrier spacing (SCS), the cell ID,
and the length of the generated waveform in subframes.

waveconfig = nrDLCarrierConfig; % Create a downlink carrier configuration object
waveconfig.Label = 'DL carrier 1'; % Label for this downlink waveform configuration
waveconfig.NCellID = 0; % Cell identity
waveconfig.ChannelBandwidth = 100; % Channel bandwidth (MHz)
waveconfig.FrequencyRange = 'FR2'; % 'FR1' or 'FR2'
waveconfig.NumSubframes = 1; % Number of 1ms subframes in generated waveform
 % (1,2,4,8 slots per 1ms subframe, depending on SCS)

Define the SCS carrier using the maximum sizes for a 40 MHz NR channel. See TS 38.101-1 for more
information on defined bandwidths and guard band requirements.

scscarrier = {nrSCSCarrierConfig};
scscarrier{1}.SubcarrierSpacing = 60;
scscarrier{1}.NSizeGrid = 128;
scscarrier{1}.NStartGrid = 0;

8 RF Blockset Examples

8-262

Bandwidth Parts

A BWP is formed by a set of contiguous resources sharing a numerology on a given carrier. This
example can support the use of multiple BWPs using nrWavegenBWPConfig objects. For each BWP
you can specify the subcarrier spacing (SCS), the cyclic prefix (CP) length, and the bandwidth. The
SubcarrierSpacing parameter maps the BWP to the SCS carrier defined earlier. The NStartBWP
parameter controls the location of the BWP in the carrier. Different BWPs can overlap each other.

% Set BWP configurations
bwp = {nrWavegenBWPConfig};
bwp{1}.BandwidthPartID = 1; % BWP ID
bwp{1}.Label = 'BWP 1 @ 60 kHz'; % Label for this BWP
bwp{1}.SubcarrierSpacing = scscarrier{1}.SubcarrierSpacing; % BWP subcarrier spacing
bwp{1}.CyclicPrefix = 'Normal'; % BWP cyclic prefix for 60 kHz
bwp{1}.NSizeBWP = scscarrier{1}.NSizeGrid; % Size of BWP in PRBs
bwp{1}.NStartBWP = 0; % Position of BWP, relative to point A, in CRBs

CORESET and Search Space Configuration

Specify the CORESET and the PDCCH search space configuration. The CORESET and search spaces
specify the possible locations (in time and frequency) of the control channel transmissions for a given
numerology.

% Define the CORESET and search configuration
coreset = {nrCORESETConfig};
searchspace = {nrSearchSpaceConfig};

PDCCH Instances Configuration

Specify the set of PDCCH transmission instances in the waveform by using a cell array.

pdcch = {nrWavegenPDCCHConfig};

PDSCH Instances Configuration

This section specifies the set of PDSCH instances in the waveform. You can set the following
parameters for each instance:

• Enable or disable this PDSCH sequence.
• Specify the BWP carrying the PDSCH. The PDSCH uses the SCS specified for this BWP.
• Power scaling in dB
• Enable or disable the DL-SCH transport channel coding.
• Transport block data source. You can use one of the following standard PN sequences: 'PN9-

ITU', 'PN9', 'PN11', 'PN15', 'PN23'. You can specify the seed for the generator using a
cell array in the form {'PN9', seed}. If no seed is specified, the generator is initialized with all
ones.

• Target code rate used to calculate the transport block sizes.
• Overhead parameter
• Symbol modulation
• Number of layers
• Redundancy version (RV) sequence

pdsch = {nrWavegenPDSCHConfig}; % Create a PDSCH configuration object
pdsch{1}.Enable = 1; % Enable PDSCH sequence

 RF Impairments for 5G NR Downlink Waveforms

8-263

pdsch{1}.Label = 'PDSCH 1'; % Label for this PDSCH sequence
pdsch{1}.BandwidthPartID = 1; % Bandwidth part of PDSCH transmission
pdsch{1}.Power = 0; % Power scaling in dB
pdsch{1}.Coding = 1; % Enable the DL-SCH transport channel coding
pdsch{1}.DataSource = 'PN9'; % Channel data source
pdsch{1}.TargetCodeRate = 0.4785; % Code rate used to calculate transport block sizes
pdsch{1}.XOverhead = 0; % Rate matching overhead
pdsch{1}.Modulation = '64QAM'; % 'QPSK', '16QAM', '64QAM', '256QAM'
pdsch{1}.NumLayers = 1; % Number of PDSCH layers
pdsch{1}.RVSequence = 0; % RV sequence to be applied cyclically across the PDSCH allocation sequence

Allocation

The following diagram represents some of the parameters used in the PDSCH allocation.

You can set the following parameters to control the PDSCH allocation. Note that these parameters
are relative to the BWP.

• Symbols in a slot allocated to each PDSCH instance.
• Slots in a frame used for the sequence of PDSCH.
• Period of the allocation in slots. If this is empty it indicates no repetition.
• PRB allocation, which is relative to the BWP.
• RNTI. This value is used to link the PDSCH to an instance of the PDCCH.
• NID for scrambling the PDSCH bits.

pdsch{1}.SymbolAllocation = [0 14]; % First symbol and length
pdsch{1}.SlotAllocation = 0; % Allocated slot indices for PDSCH sequence
pdsch{1}.Period = 1; % Allocation period in slots
pdsch{1}.PRBSet = 0:scscarrier{1}.NSizeGrid-1; % PRB allocation

8 RF Blockset Examples

8-264

pdsch{1}.RNTI = 0; % RNTI
pdsch{1}.NID = 1; % Scrambling for data part
pdsch{1}.ReservedCORESET = 1; % Rate matching pattern, defined by CORESET IDs

PDSCH DM-RS Configuration

Set the DM-RS parameters.

% Antenna port and DM-RS configuration (TS 38.211 section 7.4.1.1)
pdsch{1}.MappingType = 'A'; % PDSCH mapping type ('A'(slot-wise),'B'(non slot-wise))
pdsch{1}.DMRSPower = 0; % Additional power boosting in dB
pdsch{1}.DMRS.DMRSConfigurationType = 2; % DM-RS configuration type (1,2)
pdsch{1}.DMRS.NumCDMGroupsWithoutData = 1; % Number of DM-RS CDM groups without data. The value can be one of the set {1,2,3}
pdsch{1}.DMRS.DMRSPortSet = []; % DM-RS antenna ports used ([] gives port numbers 0:NumLayers-1)
pdsch{1}.DMRS.DMRSTypeAPosition = 2; % Mapping type A only. First DM-RS symbol position (2,3)
pdsch{1}.DMRS.DMRSLength = 1; % Number of front-loaded DM-RS symbols (1(single symbol),2(double symbol))
pdsch{1}.DMRS.DMRSAdditionalPosition = 0; % Additional DM-RS symbol positions (max range 0...3)
pdsch{1}.DMRS.NIDNSCID = 1; % Scrambling identity (0...65535)
pdsch{1}.DMRS.NSCID = 0; % Scrambling initialization (0,1)

Waveform Generation

Assign all the channel and signal parameters into the main carrier configuration object,
nrDLCarrierConfig, then generate and plot the waveform.

waveconfig.SCSCarriers = scscarrier;
waveconfig.BandwidthParts = bwp;
waveconfig.CORESET = coreset;
waveconfig.SearchSpaces = searchspace;
waveconfig.PDCCH = pdcch;
waveconfig.PDSCH = pdsch;
waveconfig.SSBurst.Enable = 0; % Disable SS Burst

% Generate complex baseband waveform
[waveform,info] = nrWaveformGenerator(waveconfig);

The nrWaveformGenerator function returns the time domain waveform and a structure array,
info, which contains the following information:

• The resource grid corresponding to this BWP
• The resource grid of the overall bandwidth containing the channels and signals in this BWP
• An info structure with information corresponding to the BWP. The contents of this info structure

for the selected BWP are shown below.
• Information regarding the control and data channels

disp('Information associated to BWP 1:')
disp(info.ResourceGrids.Info)

Information associated to BWP 1:
 Nfft: 2048
 SampleRate: 122880000
 CyclicPrefixLengths: [208 144 144 144 144 144 144 144 144 144 144 ...]
 SymbolLengths: [2256 2192 2192 2192 2192 2192 2192 2192 2192 ...]
 Windowing: 0
 SymbolPhases: [0 ...]
 SymbolsPerSlot: 14
 SlotsPerSubframe: 4

 RF Impairments for 5G NR Downlink Waveforms

8-265

 SlotsPerFrame: 40
 k0: 0

Perform Filtering of Waveform to Improve ACLR

The waveform generated may have out-of-band spectral emissions owing to the implicit rectangular
pulse shaping in the OFDM modulation (each OFDM subcarrier has a sinc shape in the frequency
domain). In order to achieve a better adjacent channel leakage ratio (ACLR) performance, you can
apply filtering to the waveform. Design a filter with a transition band that starts at the edge of the
occupied transmission bandwidth and stops at the edge of the overall channel bandwidth. This filter
involves no rate change: it just shapes the spectrum within the original bandwidth of the waveform.
The filter is first designed, then applied to the waveform.

% Design filter
fir = dsp.LowpassFilter();
fir.SampleRate = info.ResourceGrids.Info.SampleRate;
BW = scscarrier{1}.SubcarrierSpacing * scscarrier{1}.NSizeGrid * 12 * 1e3;
fir.PassbandFrequency = BW/2;
fir.StopbandFrequency = (BW/2)*1.03;
fir.StopbandAttenuation = 80; % dB

% Apply filter
waveform = [waveform; zeros(200,size(waveform,2))];
txWaveform = step(fir,waveform);
infoFIR = cost(fir);

% Account for filter delay
filDelay = floor(infoFIR.NumCoefficients/2);
txWaveform = [txWaveform(filDelay+1:end,:); zeros(filDelay,size(txWaveform,2))];

% Generate timeseries 5G Signal
OSR = 4;
waveformUp = resample(txWaveform,OSR,1);

Spectral Response of Generated Waveform

Plot the spectral response of generated waveform.

Title = sprintf('5G NR %s waveform - SCS = %dkHz - BW = %dMHz', ...
 waveconfig.FrequencyRange,...
 scscarrier{1}.SubcarrierSpacing,waveconfig.ChannelBandwidth);
sp = spectrumAnalyzer('SampleRate', fir.SampleRate*OSR,...
 'ViewType','Spectrum','SpectralAverages',100,...
 'ShowLegend',true,'ChannelNames',{'original' 'filtered'},...
 'YLimits',[-100 0], 'Title',Title,'Method','welch','AveragingMethod','exponential');
sp(waveformUp);

8 RF Blockset Examples

8-266

Create RF Transmitter with Impairments

Build a cascade of RF elements with impairments.

elements(1) = modulator(Gain=8,NF=5.8,OIP2=41,OIP3=29,LO=28e9);
elements(2) = amplifier(Gain=12,NF=3,OIP3=26);
elements(3) = rffilter('FilterType','Chebyshev','ResponseType','Bandpass','Implementation','Transfer function','FilterOrder',5,'PassbandAttenuation',60e-3, ...
 'PassbandFrequency',[27.92 28.08]*1e9, ...
 'Zin',50, ...
 'Zout',50, ...
 'Name','Filter');

Construct an rfbudget object to perform RF budget analysis.

b = rfbudget(Elements=elements,InputFrequency=0,AvailableInputPower=-4.4,SignalBandwidth=100e6,Solver='HarmonicBalance',AutoUpdate=1);

Type show(b) at the command line to visualize the transmitter in the RF Budget Analyzer app.

 RF Impairments for 5G NR Downlink Waveforms

8-267

Create RF Model for Simulation

Create an RF model from the RF budget object for circuit envelope simulation.

rfs_mmW_FR2 = rfsystem(b,'ModelName','mmW_FR2_Tx');
rfs_mmW_FR2.SampleTime = 1/fir.SampleRate/OSR;
open_system(rfs_mmW_FR2);

Add the Tx front end impairments to the NR waveform.

rxWaveformUp = rfs_mmW_FR2(real(waveformUp),imag(waveformUp));
release(rfs_mmW_FR2);

Display the 5G NR waveform.

Title = sprintf('5G NR %s waveform - SCS=%dkHz - BW = %dMHz', ...
 waveconfig.FrequencyRange,...

8 RF Blockset Examples

8-268

 scscarrier{1}.SubcarrierSpacing,waveconfig.ChannelBandwidth);
sp = spectrumAnalyzer('SampleRate', fir.SampleRate*OSR,...
 'ViewType','Spectrum','SpectralAverages',100,...
 'ShowLegend',true,'ChannelNames',{'original' 'filtered'},...
 'YLimits',[-100 0], 'Title',Title,'Method','welch','AveragingMethod','exponential');
sp(rxWaveformUp);

Downconversion

Downconvert the receiver waveform using the dsp.FIRDecimator object.

nr_fir_dec = dsp.FIRDecimator('DecimationFactor',OSR);
rxWaveform = nr_fir_dec(rxWaveformUp);
release(nr_fir_dec);

Synchronization

Estimate the timing offset.

carrier = nrCarrierConfig;
carrier.NCellID = waveconfig.NCellID;
carrier.NSizeGrid = waveconfig.SCSCarriers{1}.NSizeGrid;
carrier.SubcarrierSpacing = waveconfig.SCSCarriers{1}.SubcarrierSpacing;
carrier.CyclicPrefix = waveconfig.BandwidthParts{1}.CyclicPrefix;
[offset,mag] = nrTimingEstimate(carrier,rxWaveform,info.ResourceGrids.ResourceGridBWP);
waveformSync = rxWaveform(1+offset:end,:);

 RF Impairments for 5G NR Downlink Waveforms

8-269

Demodulation

Demodulate the multi-antenna time domain waveform to return the received resource element array.

rxGrid = nrOFDMDemodulate(carrier, waveformSync);
NrSlot = floor(size(rxGrid,2)/info.ResourceGrids.Info.SymbolsPerSlot);

Channel Estimation and Equalization for Each Slot

Get the allocated slots and OFDM symbols per slot

allocatedSlots = zeros(1,NrSlot);
for i=1:length(allocatedSlots)
 allocatedSlots(i) = info.WaveformResources.PDSCH.Resources(i).NSlot;
end
L = carrier.SymbolsPerSlot; % OFDM symbols per slot

% Perform channel estimation to detect the distorted transmitted signal.
for NSlot = 1:length(allocatedSlots)

 % Grid for current slot
 SlotID = allocatedSlots(NSlot);
 rxSlot = rxGrid(:,(1:L)+(SlotID*L),:);
 refSlot = info.ResourceGrids.ResourceGridBWP(:,(1:L)+(SlotID*L),:);

 % Perform channel estimation
 estChannelGrid = nrChannelEstimate(carrier,rxSlot,refSlot);

 % Get PDSCH resource elements from the received grid
 pdschIndices = info.WaveformResources.PDSCH.Resources(NSlot).ChannelIndices;
 [pdschRx,pdschHest] = nrExtractResources(pdschIndices,rxSlot,estChannelGrid);

 % Equalize the signal to remove co-channel interference
 noiseEst = 0; % Set noise to 0 for zero-forcing equalization
 [pdschEq,csi] = nrEqualizeMMSE(pdschRx,pdschHest,noiseEst);

 % Perform layer demapping, symbol demodulation, and descrambling
 modulation = waveconfig.PDSCH{1}.Modulation;
 RNTI = waveconfig.PDSCH{1}.RNTI;
 [dlschLLRs,rxSymbols] = nrPDSCHDecode(pdschEq,modulation,...
 carrier.NCellID,RNTI,noiseEst);
 rxSymbols = rxSymbols{1};

Compute EVM

Compute the EVM on the resulting waveform to determine the impact of the impairments. Set
modulation order

 M = modOrder(modulation);
 % Demodulate
 refBits = qamdemod(rxSymbols,M,'UnitAveragePower',true);
 % Remodulate to produce reference symbols
 refSym = qammod(refBits,M,'UnitAveragePower',true);
 evm = comm.EVM;
 rmsEVM = evm(rxSymbols,refSym);
 fprintf('slot %d: EVM = %.3f%% (%.1f dB)\n', NSlot-1, rmsEVM, 20*log10(rmsEVM/100));

slot 1: EVM = 5.121% (-25.8 dB)

8 RF Blockset Examples

8-270

slot 2: EVM = 5.114% (-25.8 dB)

slot 3: EVM = 5.277% (-25.6 dB)

end

Visualize EVM in 3-D Plot

Visualize EVM of the last slot in a 3-D plot along with the 2-D constellation plot.

x = zeros(size(rxSlot));
x(pdschIndices) = abs(rxSymbols-refSym);
surf(abs(x))

Visualize the constellation diagram.

refC = qammod(0:2^log2(M)-1,2^log2(M))/6*.925;
constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refC,...
 'XLimits',[-1 1],'YLimits',[-1.25 1.25],...
 'EnableMeasurements',1,'Position',[1000,250, 800,450]);
constDiagram(rxSymbols);
release(constDiagram);

 RF Impairments for 5G NR Downlink Waveforms

8-271

Local function

function M = modOrder(Modulation)
 % This function maps the modulation scheme to a QAM modulation order
 switch Modulation
 case 'QPSK'
 M=4;
 case '16QAM'
 M=16;
 case '64QAM'
 M=64;
 otherwise
 M=256;
 end
end

slot 0: EVM = 5.181% (-25.7 dB)

See Also
rfsystem

Related Examples
• “RF Receiver Modeling for LTE Reception” on page 8-92
• “Massive MIMO Hybrid Beamforming with RF Impairments” on page 8-196
• “PA and DPD Modeling for Dynamic EVM Measurement” on page 8-232
• “Circuit Envelope Simulation at MATLAB Command Line”

8 RF Blockset Examples

8-272

Design and Simulate Monopulse Tracking System

This example shows how to model and simulate a monopulse tracking system with a transmitter
antenna, receiver antenna, and comparator[1]. The monopulse principle is used in many RADAR
applications to estimate the position of the target in space by calculating the error in the azimuth and
elevation direction. Monopulse tracking can be achieved using various antenna and comparator
configurations. The antenna can be a 3-D antenna such as a horn or a planar antenna such as a
simple patch antenna.

The comparator can be designed using four rat-race couplers that provide sum, azimuth difference,
and elevation difference. Different configurations can be used based on the requirements, but the
integration of the antenna and coupler needs to be perfect to achieve the desired results. Integrating
the antenna and comparator directly on the hardware results in amplitude and phase mismatches,
which can can cause the outputs to vary. Hence, it is important to simulate the integrated model to
get accurate results, anticipate the mismatches in phase, and to devise a corrective action before the
hardware is fabricated.

Monopulse System Theory

The monopulse tracking radar can be used to track single or multiple targets by estimating the
position of the target in space. This is a diagrammatic representation of the monopulse system.

 Design and Simulate Monopulse Tracking System

8-273

Different types of antennas are used to implement the monopulse technique and the diagram shows
that the power received from the four quadrants of antenna is given to the passive comparator
network to obtain sum (S), azimuth difference (AD), elevation difference (ED), and a cross-quadrant
difference (CQD) , all calculated using the following equations.

• (A + B + C + D) = S
• (A + B) – (C + D) = AD
• (A + D) – (B + C) = ED
• (A + C) – (B + D) = CQD

A, B, C, and D are the four quadrants of the 2-by-2 rectangular array antenna. Three receiver
channels are required to process these outputs and the target range and position can be estimated
using a single pulse. Hence, this technique is named monopulse. The difference signals AD and ED
are used for calculating the angular error of the target with respect to the boresight. At the
boresight, the sum and difference pattern have a maximum and minimum value, respectively, and this
null depth defines the angular resolution and target tracking accuracy. The null depth can be
increased by improving the design of the comparator [2]. The combined simulation of the antenna

8 RF Blockset Examples

8-274

and the comparator is important as it gives the sum and difference patterns that are essential in
calculating the monopulse error signal.

Subsystem Simulation Model

The monopulse system model is built for a transmitter and receiver antenna with four elements
arranged in a 2-by-2 rectangular array configuration. The antenna pattern for the transmitter and
receiver is designed at the frequency of 2 GHz. The maximum value is obtained for [azimuth
elevation] of [0 90] degrees and the gain is 14.8 dBi.

ant = patchMicrostrip;
ant=design(ant,2e9);
array = pcbStack(design(rectangularArray,2e9,ant));
figure,mesh(array,'MaxEdgeLength',8e-3);
figure,pattern(array,2e9);

 Design and Simulate Monopulse Tracking System

8-275

Use the 2-by-2 rectangular array antenna at the receiver, but tilt it by 180 degrees so that the two
antennas face each other. The calculated pattern has a maximum value of [0 -90] degrees.

ant = patchMicrostrip;
ant = design(ant,2e9);
array1 = pcbStack(design(rectangularArray,2e9,ant));
array1.Tilt = 180;
figure,mesh(array1,'MaxEdgeLength',8e-3);
figure,pattern(array1,2e9);

8 RF Blockset Examples

8-276

 Design and Simulate Monopulse Tracking System

8-277

The antennas are solved using the method of moments full-wave simulator. The antenna object is
given as an input to the transmitter and receiver antenna block in the system model.

System Simulation Model

The simulation model contains a transmitter and a receiver. A 10 dBm input is divided into four equal
parts using the Wilkinson splitter blocks and provided to the array block. The antenna array block in
RF Blockset is used to specify the transmitter and receiver antenna. An antenna array object and the
direction of departure can be specified in the transmitter block, and the array object and direction of
arrival can be specified in the receive array block. The receiver antenna is connected to the
comparator circuit, built using rat-race couplers, and the outputs obtained are sum, azimuth
difference, and elevation difference. The Wilkinson and the rat-race blocks are modelled using the
ideal S-parameters.

The power received in these channels with different angles of arrival on the receive antenna
simulates the monopulse tracking system. The antennas in the catalog can be used in the transmit or
receive antenna block. The S-parameters of different antennas and comparators can be imported into
the model to verify whether these devices are suitable for a monopulse application.

The model can be further refined using S-parameters, calculated using a behavioral model or a
method-of-moments solution. These S-parameters can be imported into the model in RF Blockset to
simulate the monopulse system. The RF Blockset uses the harmonic balance and circuit envelope
techniques and takes nonlinear effects into the simulation.

The sum port provides the value of 39.02 dBm, which matches the expected result obtained by adding
input power, gain of the transmitter, and receiver antennas. The difference between the sum port and

8 RF Blockset Examples

8-278

azimuth difference provides a null depth value that is 20 dB lower than the sum signal. The null depth
value needs to be improved for better performance of the monopulse system. The observed lower null
depth value is caused by a small phase difference between the antenna ports. To compensate for this
phase shift, the phaseShift blocks are connected to the output of the antenna ports. The null depth
improves and is 44 dB lower than the sum signal.

Simulation Results

Open and simulate the monopulse tracking system model.

open_system("monopulse.slx")
sim("monopulse.slx");

The working of the monopulse tracking system can be shown by varying the direction of the target
and then measuring the results on the sum port, azimuth, and elevation difference ports. To visualize
the system's behavior based on the target location, the simulations were run on this model by varying
the angle of arrival on the receiver array block. The angle of arrival specifies the direction from which
the signal is received and mimics the behavior of the target's location. The angle of arrival is initially
specified along the boresight direction of the receiver antenna at [0 –90], and then decreased in the
steps of 10 degrees to measure the power received in the sum and azimuth difference ports.

As the angle of arrival is decreased, the power received on the azimuth difference port increases, and
for –70 degrees, this value is greater than the sum port, which signifies that the target is not in the
boresight direction. By looking at the relative ratios between the three received powers, the angular
position of the receiver can be measured in real time. A similar approach can be used to measure the
error observed in the elevation difference port. When the signal arrives from a target at [45 –70],
both the azimuth and elevation differences show the change in the values, and both values are close
to 29 dB, whereas the sum is around 32 dB.

The model is simulated for all the angles of arrival and the power received in the sum and difference
ports is plotted. The figure shows that the elevation difference has a greater null depth compared to
the azimuth difference. The elevation difference is formed by subtracting two difference signals from
two rat-race couplers, whereas the azimuth difference is formed by subtracting two sum signals from
two rat-race couplers. Hence, the null depth for the elevation difference is more than the azimuth
difference.

openfig("result.fig");

 Design and Simulate Monopulse Tracking System

8-279

Design Rat-Race Coupler and Wilkinson Power Dividers Using RF PCB Toolbox

Instead of using the ideal models from RF Blockset, more realistic PCB designs can be built and
simulated using the EM analysis to reflect a more practical result. The rat-race coupler and the
Wilkinson power dividers can be designed and simulated using RF PCB Toolbox™ objects.The S-
parameters can be saved in s3p and s4p files, respectively.

Run these commands at the command line to retrace the coupler for the comparator.

c = couplerRatrace;
c = design(c,2e9);
spar_ratrace = sparameters(c,linspace(1.5e9,2.5e9,51));

Run these commands at the command line to retrace the Wilkinson splitter for the comparator

d = wilkinsonSplitter;
d = design(d,2e9);
spar_wilkinson = sparameters(d,linspace(1.5e9,2.5e9,51));

Run these commands at the command line to create the S3P and S4P files.

rfwrite(spar_wilkinson,'spar_wilkinson.s3p');
rfwrite(spar_ratrace,'spar_ratrace.s4p');

8 RF Blockset Examples

8-280

The Wilkinson and the rat-race coupler blocks are replaced with the S-parameters blocks and the S3P
and S4P files calculated above are used.

Open and simulate monopulse system designed with the rat-race coupler and Wilkinson splitter.

open_system("monopulse_sparameters.slx")
sim("monopulse_sparameters.slx");

The result shows that the null depth is particularly good when the behavioral S-parameters are used,
but when the method-of-moments solution is used on the coupler object, the null depth degrades and
is 20 dB lower than the sum signal, which is what we might observe when the design is fabricated.
Efficient designs of rat-race couplers that provide good isolation between the ports and exact phase
difference between the output ports can improve the null depth.

The result shows that the practical designs need to be improved and the amplitude and phase on each
port need to be balanced perfectly to acheive the desired result in the monopulse system. This can be
prototyped in the model by adding the phase shift block to the rat-race couplers and adjusting the
phase of the output signals such that the elevation and azimuth difference can be improved.

See Also
“Rat-Race Coupler - Visualize and Analyze” (RF PCB Toolbox)

References
[1] Joshi, Sourabh. Kulkarni, Shashank. " Model-Based Design and Simulation of Monopulse Tracking

System." IEEE MAPCON Dec 2022.

[2] Kian Sen Ang, Y. C. Leong and Chee How Lee, "A wide-band monopulse comparator with complete
nulling in all delta channels throughout sum channel bandwidth," in IEEE Transactions on
Microwave Theory and Techniques, vol. 51, no. 2, pp. 371-373, Feb. 2003.

 Design and Simulate Monopulse Tracking System

8-281

Enable Model Protection and Accelerator Modes in RF Blockset
Models

This topic discusses the workflow for enabling model protection and accelerator modes in RF
Blockset™ models designed using the Circuit Envelope environment. To demonstrate this workflow,
an automatic gain control (AGC) algorithm for RF baseband processing is designed. You can also
enable model protection and accelerator modes in Equivalent Baseband and Idealized Baseband
environments.

Overview

You can conceal the contents of your model by creating a protected model in the SLXP file format.
Doing so is useful when you want to share a model with a third party without revealing intellectual
property. Protecting a model conceals the implementation details of the original model by compiling it
into a referenced model. Additionally, if you opt to protect your model with a password, the software
uses AES-256 encryption. For more information, see “Protect Models to Conceal Contents” (Simulink
Coder).

You can also enable rapid accelerator and model reference accelerator modes in RF Blockset models
to speed up your simulations. These accelerator modes are ideal when you need to perform iterative,
long-running, computationally expensive simulations such as Monte Carlo simulation or system
optimizations on your RF system. Rapid accelerator mode speeds up simulation by generating an
executable for your model. The exact speedup varies depending on the model. For more information,
see “How Acceleration Modes Work” and “Choose Simulation Modes for Model Hierarchies”. The
accelerator modes are useful when you tune parameters outside of the RF system, for example,
system optimizations on models containing RF systems, specifically when tuning parameters outside
of the RF network and keeping parameters of blocks within the RF system fixed.

To use a protected model containing Circuit Envelope blocks, you first need to ensure that the
necessary RF Blockset libraries and dependencies are loaded in MATLAB®. Note that you only need
to do this once per MATLAB session, but you must do this before the first time you use a protected
model containing Circuit Envelope blocks in that MATLAB session. Execute the following command to
preload the Circuit Envelope Utilities library and to configure the RF Blockset environment.

open_system simrfV2util1

Workflow

The workflow to enable model protection and accelerator models in the Circuit Envelope environment
is as follows:

1 RF Model Creation — Create your RF system using Circuit Envelope blocks. Start by designing
your RF network in the RF Budget Analyzer app, then export the network to the Circuit
Envelope environment. Simulate and test your model behavior. For more information, see
“Design RF Direct-Conversion Receiver” on page 8-284.

2 RF Model IP Protection — Conceal your model using an SLXP model file. The model protection
workflow enables you to view and simulate the model with password protection. You can also
generate a test harness for your generated SLXP model file. For more information, see “Protect
Circuit Envelope Model” on page 8-288.

3 Baseband Processing and Algorithm Design — Use the SLXP file from step 2 in a model to
process baseband signals. In this step, you design the baseband signal processing and

8 RF Blockset Examples

8-282

communication algorithm around the RF network that you designed in step 1. Leverage
accelerated simulations for rapid design iteration. For more information, see “Implement
Automatic Gain Control for RF Receiver” on page 8-295.

You can also perform baseband algorithm tuning and batch simulations by enabling rapid accelerator
mode in the top-level model. Doing so can speed up top-down simulation run time across the model
reference hierarchy, enabling you to more quickly perform parameter sweeping, tuning, optimization,
and batch simulations.

Licensing Considerations

• To create an RF Blockset protected model, you need a Simulink Coder™ license in addition to an
RF Blockset license. If you want to generate a read-only web view to include with the protected
model, you additionally need a Simulink Report Generator™ license.

• To use an RF Blockset protected model, you need Simulink® and RF Blockset.

Limitations

Rapid Accelerator mode does not support:

• Antenna block
• RF Measurement Testbench
• Circuit Envelope testbench library
• Frequency domain simulation
• Phase noise simulation

Model reference accelerator mode does not support:

• Antenna block
• RF Measurement Testbench
• Circuit Envelope testbench library

RF Blockset does not support Simulink Compiler™.

See Also

Related Examples
• “Comparing Performance”
• “Design Your Model for Effective Acceleration”
• “Model Reference Requirements and Limitations”
• “Reference Protected Models from Third Parties”

 Enable Model Protection and Accelerator Modes in RF Blockset Models

8-283

Design RF Direct-Conversion Receiver

This example shows how to design an RF direct-conversion receiver (DCR) that supports variable gain
and attenuation control. The design workflow entails the following steps:

1 Start with a preliminary design in the RF Budget Analyzer app.
2 Export the RF budget to RF Blockset™.
3 Make further modifications to the circuit envelope model.
4 Simulate and test the model behavior.

Design Receiver in RF Budget Analyzer App

You can model the DCR with an RF chain that has the following stages:

• Attenuator — Prevents saturation and overload of the RF front-end by strong incoming signals
that can desensitize or damage the receiver

• Surface acoustic wave (SAW) filter — Performs RF band selection
• Low-noise amplifier (LNA) — Amplifies the received RF signal without significantly degrading the

signal-to-noise ratio (SNR)
• Demodulator — Downconverts the RF signal to baseband
• Baseband amplifier — Regulates the output signal power, for example, to keep it within the

dynamic range of a downstream analog-to-digital converter (ADC)

Typically, a low-pass filter is appended to the end of the RF chain for the DCR to extract the baseband
signal within the band of interest, that is, to perform channel selection. For the RF budget analysis
here, assume ideal channel-selection filtering at the output of the demodulator.

Design this RF chain either interactively with the RF Budget Analyzer app or progammatically with
circuit and rfbudget objects.

RFDCRBudget = rfbudget([...
 attenuator(Name='Attenuator',Attenuation=0.2), ...
 nport(Name='SAWFilter',FileName='SAW_Filter_Data.s2p'), ...
 amplifier(Name='LNA',Gain=22,NF=7), ...
 modulator(Name='Demodulator',ConverterType='Down',LO=2.45e9,Gain=-7,NF=10), ...
 amplifier(Name='BasebandAmplifier',Gain=40,NF=14)], ...
 InputFrequency=2.45e9, ...
 AvailableInputPower=-100, ...
 SignalBandwidth=2e6)

RFDCRBudget =

 rfbudget with properties:

 Elements: [1x5 rf.internal.rfbudget.Element]
 InputFrequency: 2.45 GHz
 AvailableInputPower: -100 dBm
 SignalBandwidth: 2 MHz
 Solver: Friis
 AutoUpdate: true

8 RF Blockset Examples

8-284

 Analysis Results
 OutputFrequency: (GHz) [2.45 2.45 2.45 0 0]
 OutputPower: (dBm) [-100.2 -103.2 -81.22 -88.22 -48.22]
 TransducerGain: (dB) [-0.2 -3.221 18.78 11.78 51.78]
 NF: (dB) [0.2 2.522 10.09 10.14 10.77]
 IIP2: (dBm) []
 OIP2: (dBm) []
 IIP3: (dBm) [Inf Inf Inf Inf Inf]
 OIP3: (dBm) [Inf Inf Inf Inf Inf]
 SNR: (dB) [10.76 8.443 0.8747 0.8242 0.1984]

Execute the following command to visualize the design of the RF chain and its budget analysis in the
RF Budget Analyzer app.

rfBudgetAnalyzer(RFDCRBudget)

Export RF Budget to RF Blockset to Automatically Generate Circuit Envelope Model

The circuit envelope model supports multicarrier simulation of the DCR while taking into account
nonlinear effects and impairments, mixer phase noise and LO-RF isolation, and the impact of and
interactions between the signal of interest and other in-band and out-of-band interfering signals.

Create a circuit envelope model from the rfbudget object or interactively from within the RF
Budget Analyzer app.

exportRFBlockset(RFDCRBudget)

 Design RF Direct-Conversion Receiver

8-285

As seen in the automatically generated model, this example makes the following assumptions:

• In the Configuration block, the simulation step size is automatically set to 1/8 times the reciprocal
of the input signal envelope bandwidth. In this example, this input signal bandwidth is 2 MHz and
is centered around the input carrier frequency of 2.45 GHz. This corresponds to a simulation step
size of 62.5 ns and a simulation bandwidth of 16 MHz.

• Like that of the budget analysis, the demodulator is configured to perform ideal low-pass channel-
selection filtering within the simulation bandwidth around the output carrier of interest, which is
at DC (0 Hz). Although it is out of scope for this example, you can modify the channel-selection
filter options in the IQ Demodulator block to model realistic and realizable channel-selection
designs and implementations.

• The demodulator is implemented with a quadrature architecture, which is a standard modeling
paradigm when the signal of interest is QPSK-modulated and contains both in-phase (I) and
quadrature (Q) components. It is standard modeling practice to combine the two extracted, real-
valued baseband signals, representing the two components as a single complex-valued baseband
signal (I+jQ) and feeding this signal into the baseband QPSK demodulator.

The S-Parameters block describing the SAW filter uses rational fitting in order to simulate frequency
data in the time domain. Note that at 2.45 GHz the filter introduces a phase rotation of approximately
–59 degrees. While it is not shown here, if you simulate this model, you can see that the complex
input signal is partly downconverted on the I and Q branches, and thus the instantaneous output
powers on the two branches can be different. However, the time-averaged output powers on the I and
Q branches are expected to be the same. In addition, the average of the I and Q instantaneous output
powers, that is (I(t)+Q(t))/2, is expected to match the output power reported in the budget analysis.

Configure Model to Support Automatic Gain Control

Make the following changes to the model to prepare it for use within an automatic gain control (AGC)
loop:

• Replace the Attenuator block with a Variable Attenuator block. Control the variable attenuation
using one of the model's root-level input ports.

• Replace the Amplifier blocks with VGA blocks. Control the variable gain using one of the model's
root-level input ports.

• Assume that the IP2 and IP3 values for each VGA block are gain independent. Accordingly, specify
them as constant values, and configure the VGA block to use the input-referred convention for the
intercept points: IIP2 and IIP3. If you want to specify gain-dependent IP2 and IP3 values, then you
can configure the VGA block to use the output-referred convention for the intercept points and
then use lookup table blocks to specify the OIP2 vs. Gain and OIP3 vs. Gain relations. Note that
this is out of scope for this example.

• Configure the RF Outport block to output complex baseband signals for I and Q each, and take the
real part of each signal for the purposes of data type conversion. Note that the imaginary part of

8 RF Blockset Examples

8-286

each signal is zero. Typically, a real passband representation is the more appropriate choice, given
that the output signal is at DC (0 Hz). However, this model uses frame-based input signals to
accelerate simulation time, and the RF Blockset Circuit Envelope library does not support frame-
based processing when the Outport block's Output is set to Real Passband. Although this
example does not explicitly show it, you can confirm that each I and Q signal has zero imaginary
part.

• Set Samples per frame to 256 in the Configuration block to help accelerate simulation time.
• Configure the signal attributes of the model's root-level input, specifically the one corresponding

to the input RF signal In RF, to be of complex-valued signal type. This input RF signal is a
complex equivalent baseband signal, and it corresponds to the envelope of the RF carrier, which is
at 2.45 GHz.

Specify amplifier nonlinearities for the VGA blocks.

vgaIIP2 = 50;
vgaIIP3 = 30;

Specify mixer impairments for the IQ Demodulator block.

mixerParameters.LOToRFIsolation = 105;
mixerParameters.PhaseNoiseFrequencyOffsets = 1e6*[0.2 1 2 3 7];
mixerParameters.PhaseNoiseLevels = [-70 -80 -95 -110 -120];
mixerParameters.IIP2 = 55;
mixerParameters.CSFilterPassBandEdgeFrequency = 50e6;

View the final model.

open_system RFDCR

 Design RF Direct-Conversion Receiver

8-287

Protect Circuit Envelope Model

This example shows how to use Simulink Coder™ model protection with an RF Blockset™ circuit
envelope model so that it can be shared as an SLXP file with a third party without revealing
implementation details and intellectual property.

Model Protection Overview

You can configure the protected model to allow end users to perform only a specific subset of tasks,
such as viewing and simulation. In addition, you can optionally password protect each option with
AES-256 encryption. For example, you can enable third party end users to simulate the protected
model without a password, and you can protect the ability to open a read-only web view of the model
with a password to conceal the implementation details. Meanwhile, when you share the same
protected model with your internal team collaborators, you can also provide them the password to
allow them to see and inspect the implementation details too. Furthermore, you can create a harness
model that references the protected model. End users can use this harness model along with the
interface report to understand how to use the protected model and how to interface it with their
existing systems. For more information, see “Protect Models to Conceal Contents” (Simulink Coder).

Create Protected Model for Simulation and Password-Protected Viewing

Protect the model of an RF direct-conversion receiver (DCR) configured for use within an automatic
gain control (AGC) loop. Note that all parameters of blocks from the Circuit Envelope library are
nontunable block parameters, whose values cannot change during simulation. Consequently, none of
the parameters of blocks within the RF network can be designated as tunable parameters of the
protected model. However, the VGA block and Variable Attenuator block accept Simulink® signal
controls, and these are root-level input signals to the model. Furthermore, the IIP2 and IIP3 values of
the VGA block are controlled by Constant block sources in the model, whose parameters are tunable.
For more information, see “Tune and Experiment with Block Parameter Values”.

Specify amplifier nonlinearities for the VGA blocks. These are tunable parameters for the model.

vgaIIP2 = 50;
vgaIIP3 = 30;

Specify mixer impairments for the IQ Demodulator block. These are nontunable parameters for the
model.

mixerParameters.LOToRFIsolation = 105;
mixerParameters.PhaseNoiseFrequencyOffsets = 1e6*[0.2 1 2 3 7];
mixerParameters.PhaseNoiseLevels = [-70 -80 -95 -110 -120];
mixerParameters.IIP2 = 55;
mixerParameters.CSFilterPassBandEdgeFrequency = 50e6;

Open the model of the DCR.

model = 'RFDCR';
open_system(model)

8 RF Blockset Examples

8-288

You can protect the model interactively or programmatically; both approaches are illustrated here. In
this example, protect the model such that end users can simulate it without a password and open a
read-only web view with the password. In addition, automatically generate a test harness model that
provides an isolated environment to test the protected model. Note that Simulink Coder is required to
create the protected model, while Simulink Report Generator™ is required to generate the web view.
Alternatively, if you do not have Simulink Report Generator, then you can still create a protected
model enabled only for simulation.

In either case, temporarily suppress the warning regarding non-passivity of noise correlation data
derived from the rational fit of the S-parameters. This consideration is specific to this model and S2P
file.

warningState(1) = warning('off', ...
 'simrf:simrfV2errors:DerivedNoiseNotPassive');
restoreWarningState(1) = onCleanup(@()warning(warningState(1)));

To interactively create a protected model, follow the steps in “Explore Protected Model Capabilities”.
If have Simulink Report Generator, the option to create a read-only view appears as shown.
Otherwise, the option does not appear.

 Protect Circuit Envelope Model

8-289

To programmatically create a protected model, use the Simulink.ModelReference.protect
(Simulink Coder) function. Prior to calling this function, optionally specify passwords for the
various functionalities of the protected model that you intend to enable. In this example, set the
password as "RF Blockset" for the read-only view, and suppress the warning regarding the omission
of password protection for simulation of the protected model. In addition, if you have Simulink Report
Generator, set generateWebView to true in the following code.

warningState(2) = warning('off', ...
 'Simulink:protectedModel:EncryptOnNoPasswordForCategory');
restoreWarningState(2) = onCleanup(@()warning(warningState(2)));

generateWebView = false; % Requires Simulink Report Generator
Simulink.ModelReference.ProtectedModel.setPasswordForView(...
 model,'RF Blockset')
[~] = Simulink.ModelReference.protect(model, ...
 Harness=true,WebView=generateWebView,Encrypt=true,Report=true, ...
 TunableParameters={'vgaIIP2','vgaIIP3'});

Creating protected model for 'RFDCR'.
Starting serial model reference simulation build.
Generating code for Physical Networks associated with solver block 'RFDCR/Configuration/Solver Configuration' ...
done.
Successfully updated the model reference simulation target for: RFDCR
Finished creating protected model 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\4\tp1199c11b\simrf-ex17815065\RFDCR.slxp'.
Creating harness model for protected model 'RFDCR.slxp'.
Finished creating harness model 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\4\tp1199c11b\simrf-ex17815065\RFDCR_harness.slx'.

8 RF Blockset Examples

8-290

Revert the temporary warning suppressions to restore the warning states.

clear restoreWarningState

Examine Protected Model Interface Report

View the protected model interface report, which you can use as a reference to communicate with the
end users of your protected model. To open the report interactively, you can right-click on the newly
created SLXP file in the Current Folder browser and select Open Report. To open the report
programmatically, execute the following MATLAB command.

Simulink.ProtectedModel.open('RFDCR','report')

Select the Summary subpage to view details about the environment, platform, and version
information, as well as the model functionality supported by the protected model.

 Protect Circuit Envelope Model

8-291

Select the Interface Report subpage to view details such as the input and output specifications and
tunable parameters associated with the model.

8 RF Blockset Examples

8-292

Examine Protected Model Read-Only Web View

If available, open the read-only web view of the protected model. If applicable, enter the password in
the respective dialog prompt. In this example, the password for the read-only view is "RF Blockset".
Note that Simulink Report Generator is not required to open the web view, but it is required to
generate it. To open the read-only view interactively, you can right-click on the newly created SLXP
file in the Current Folder browser and select Open Webview. To open the read-only view
programmatically, execute the following MATLAB command.

Simulink.ProtectedModel.open('RFDCR','webview')

 Protect Circuit Envelope Model

8-293

Test Protected Model Using Harness

Execute the following MATLAB command to simulate the test harness model. Note that no password
is required for simulation in this example.

sim RFDCR_harness

8 RF Blockset Examples

8-294

Implement Automatic Gain Control for RF Receiver

This example shows how to use a protected RF Blockset™ circuit envelope model as a referenced
model within a system that implements baseband signal processing, communications algorithms, and
adaptive architectures around an RF network. To illustrate these concepts, this example designs and
implements an automatic gain control (AGC) algorithm for an RF direct-conversion receiver (DCR) in
a context similar to that of the ZigBee®-like application explored in “Top-Down Design of an RF
Receiver” on page 8-166.

In addition, this example demonstrates how to use model references, modeling hierarchies, and
variants for modular development, protected model usage, accelerated simulation, and overall rapid
design iteration. For more information about these concepts, see “Model Reference Basics”.

ZigBee-Like System Containing RF DCR and Subject to Strong Interference

The top-level system consists of the following components:

• Baseband transmitter used to generate a ZigBee-like waveform spectrally representative of
signals that conform to the IEEE® 802.15.4 standard

• Wideband interferer used to generate a WCDMA-like, in-band but out-of-channel blocker
spectrally representative of interfering signals noncompliant with the standard

• Circuit envelope model of an RF DCR
• AGC algorithm implemented via a MATLAB Function block to supply the variable gain and

variable attenuation control signals to the RF DCR
• Peak detector used by the AGC feedback loop to regulate the fast response, which decreases gain

and increases attenuation when the peak power exceeds a prespecified threshold
• Average power meter used by the AGC feedback loop to regulate the slow response, which adjusts

gain and attenuation to steadily bring the average power and signal-to-noise ratio (SNR) to the
target levels

• Analog-to-digital converter (ADC) used to convert the baseband analog signal output by the RF
receiver into baseband digital signals consumed by downstream communications and digital signal
processing

• Baseband receiver that receives and processes the 802.15.4 waveform and computes the chip
error rate (ChER) system-level performance metric.

To begin, specify the baseband and RF parameters that are required for simulation. Note that
vgaIIP2 and vgaIIP3 are tunable parameters of the protected model for the RF DCR. The
remaining parameters are associated with various baseband components in the top-level system.

% Baseband parameters
bitRate = 250e3;
spf = 4; % samples per frame
bps = 4; % bits per ZigBee symbol
sps = 16; % samples per OQPSK symbol
cps = 32; % chips per ZigBee symbol
chipRate = bitRate*cps/bps;

% RF parameters
oversampling = 4; % no out-of-band signal
vgaIIP2 = 50; % IIP2 of RF receiver's VGA
vgaIIP3 = 30; % IIP3 of RF receiver's VGA

 Implement Automatic Gain Control for RF Receiver

8-295

To use a protected model containing Circuit Envelope blocks, you first need to ensure that the
necessary RF Blockset libraries and dependencies are loaded in MATLAB®. Note that you only need
to do this once per MATLAB session, but you must do this before the first time you use a protected
model containing Circuit Envelope blocks in that MATLAB session. Execute the following command to
preload the Circuit Envelope Utilities library and to configure the RF Blockset environment.

open_system simrfV2util1

Open the top-level model. Note that the model contains interactive controls, which you can use to
quickly modify it.

model = 'RFDCRWithAGC';
open_system(model)

8 RF Blockset Examples

8-296

Reference Protected Model of RF DCR

Open the subsystem containing the referenced model of the RF DCR. Although the SLXP file is
platform-specific, the model's PostLoadFcn callback is set up to automatically choose the correct
version of the SLXP file for your specific platform.

subsystemDCR = ...
 [model,'/Circuit Envelope Model of Direct Conversion Receiver'];
blockModelReference = [subsystemDCR,'/Model'];

if ismac || isunix || ispc
 open_system(...
 [model,'/Circuit Envelope Model of Direct Conversion Receiver'])
else
 disp("Protected model in this example not supported for " + computer)
end

Note that the Model block references a protected model, as indicated by the shield badge on the
bottom-left corner of the block. Also note that the protected model has predefined sample rates as
well as fixed input and output signal dimensions. To review the protected model's interface
specifications, you can right-click on the shield badge and select Display Report or see “Protect
Circuit Envelope Model” on page 8-288.

This protected model is designed to work with framed signals of size 256 and period 8e-6 seconds at
its input and output ports. Consequently, to implement baseband system designs with different frame
sizes and frame rates, you might need to use Unbuffer, Buffer, and Rate Transition blocks to correctly
interface with the referenced model for the RF system. While a full treatment of this is out of scope
for this example, the model already includes these blocks, although some of them are commented out.

 Implement Automatic Gain Control for RF Receiver

8-297

Use Variants to Switch Between AGC and Fixed Mode Implementations

The top-level model also makes use of Simulink® variants. In general, you can use variant
subsystems and Simulink variant capabilities to create flexible models with built-in variabilities to
efficiently manage and compare various designs. In this example model, you can quickly enable or
disable the AGC algorithm as per the following steps. First, right-click on the variant badge on the
bottom-left corner of the Variant Subsystem block. Then, set Label Mode Active Choice as desired.

subsystemAGC = [model,'/Variable Gain and Variable Attenuation'];
open_system(subsystemAGC)

The AGC dynamically adjusts the gain and attenuation of the DCR to maximize the SNR. It amplifies
the output power from the RF network to stay within the dynamic range of the ADC, and it attenuates
the incoming power to the RF network to prevent saturation and overload of the RF front-end. In
contrast, without the AGC the gain and attenuation are fixed and require manual retuning to
maximize the SNR. In this example, the AGC maintains the variable gain between –10 dB to 40 dB. It
also maintains the variable attenuation between 0 dB to 60 dB. You can enable the AGC by setting the
active variant in the variant subystem.

8 RF Blockset Examples

8-298

set_param(subsystemAGC,'LabelModeActiveChoice','With AGC')
activeVariant = get_param(subsystemAGC,'CompiledActiveChoiceBlock');
open_system(activeVariant)

When the AGC is disabled, the fixed value set for the variable gain is 40 dB, and the fixed value set
for the variable attenuation is 0 dB. You can disable the AGC by setting the active variant in the
variant subystem.

set_param(subsystemAGC,'LabelModeActiveChoice','Without AGC')
activeVariant = get_param(subsystemAGC,'CompiledActiveChoiceBlock');
open_system(activeVariant)

Store Block Paths to Tune Signal and Interferer Levels and View Scopes

Store the paths to the blocks used to adjust the power levels of the transmitter and interferer. Each of
these blocks applies a dB gain to its input, as specified by its dB parameter. At 0 dB gain, the nominal
power levels for both the transmitter and the interferer are –100 dBm. You can interactively tune the
dB gains from within the Simulink Editor, or you can programmatically set them.

blockGainTransmitter = [model,'/dB Gain Transmitter'];
blockGainInterferer = [model,'/dB Gain Interferer'];

Store the block paths of the scopes in the model so that you can open and examine the scopes later in
this example.

blockScope = [model,'/Scope'];
blockRxSpectrum = [model,'/Rx Spectrum'];

Simulate Model with AGC for Sensitivity Level Input and Weak Interferer

As per the design of the DCR in “Design RF Direct-Conversion Receiver” on page 8-284, the minimum
signal power required to operate the receiver is around –100 dBm. In the top-level system, the
baseband transmitter starts at –100 dBm, which is the sensitivity level of the DCR. The interferer is
also set to –100 dBm and is thus a weak interferer. As a result, the ChER is essentially determined by
the noise floor. Given the low input power levels, the AGC maximizes the variable gain to 40 dB and
minimizes the variable attenuation to 0 dB.

 Implement Automatic Gain Control for RF Receiver

8-299

set_param(subsystemAGC,'LabelModeActiveChoice','With AGC')
set_param(blockGainTransmitter,'dB','0')
set_param(blockGainInterferer,'dB','0')

Simulate the model and examine the performance metrics, the spectrum of the received signal after
the ADC, and the evolution of the variable gain and attenuation as regulated by the AGC. For your
convenience, the model automatically resets the ChER metrics after 2 ms and recomputes it from 2–4
ms. This provides enough time for the AGC-controlled variable gain to stabilize, and so the final
reported ChER is not affected by the startup dynamics of the model. The ChER is close to 8%.

if ismac || isunix || ispc
 [~] = sim(model,StopTime='4E-3');
 open_system(blockRxSpectrum)
 open_system(blockScope)
else
 disp("Simulation of this example model not supported for " + computer)
end

8 RF Blockset Examples

8-300

 Implement Automatic Gain Control for RF Receiver

8-301

Without the AGC, the variable gain stays at 40 dB, and the variable attenuation stays at 0 dB. This
matches the respective levels to which the variable gain and attenuation settle in the presence of the
AGC, so you can expect similar system performance with vs. without the AGC. Although this example
does not explicitly show it, you can rerun this simulation with the AGC disabled to confirm the same.

Increase Input Power Above Noise Floor and Simulate Model with AGC

Increase the input power by 10 dB, which is well above the noise floor. Meanwhile, keep the
interferer power the same at –100 dBm. Accordingly, the ChER is close to zero. The AGC still
maximizes the variable gain to 40 dB and minimizes the variable attenuation to 0 dB. The overall
input power is still far from the DCR's saturation level. The ChER is around 0.02%.

set_param(subsystemAGC,'LabelModeActiveChoice','With AGC')
set_param(blockGainTransmitter,'dB','10')
set_param(blockGainInterferer,'dB','0')

if ismac || isunix || ispc
 [~] = sim(model,StopTime='4E-3');
 open_system(blockRxSpectrum)

8 RF Blockset Examples

8-302

 open_system(blockScope)
else
 disp("Simulation of this example model not supported for " + computer)
end

 Implement Automatic Gain Control for RF Receiver

8-303

8 RF Blockset Examples

8-304

Simulate Model with AGC in Presence of Strong Interferer

Increase the interferer power by 50 dB, thus creating substantial in-band blocking, capable of driving
the DCR into saturation. In response, the AGC reduces the variable gain to 26 dB, lower than the
maximum of 40 dB. The ChER worsens to 19%, but the degradation is mitigated due to the AGC.

set_param(subsystemAGC,'LabelModeActiveChoice','With AGC')
set_param(blockGainTransmitter,'dB','10')
set_param(blockGainInterferer,'dB','50')

if ismac || isunix || ispc
 [~] = sim(model,StopTime='4E-3');
 open_system(blockRxSpectrum)
 open_system(blockScope)
else
 disp("Simulation of this example model not supported for " + computer)
end

 Implement Automatic Gain Control for RF Receiver

8-305

8 RF Blockset Examples

8-306

 Implement Automatic Gain Control for RF Receiver

8-307

Disable AGC and Compare System Performance

Disable the AGC and rerun the simulation. In absence of the AGC, the strong interferer drives the
DCR into saturation, as the system does not have a mechanism to adapt to and avoid this situation.
The variable gain remains at 40 dB, and the variable attenuation remains at 0 dB. As a result, the
ChER suffers from severe degradation and hovers near 48%.

set_param(subsystemAGC,'LabelModeActiveChoice','Without AGC')
set_param(blockGainTransmitter,'dB','10')
set_param(blockGainInterferer,'dB','50')

if ismac || isunix || ispc
 [~] = sim(model,StopTime='4E-3');
 open_system(blockRxSpectrum)
 open_system(blockScope)
else
 disp("Simulation of this example model not supported for " + computer)
end

8 RF Blockset Examples

8-308

 Implement Automatic Gain Control for RF Receiver

8-309

8 RF Blockset Examples

8-310

 Implement Automatic Gain Control for RF Receiver

8-311

Cross-Product Workflow Topics

• “RF System Design for Radar and Wireless Communications” on page 9-2
• “RF Transceiver Design” on page 9-4
• “RF Noise and Nonlinearity Simulations” on page 9-6

9

RF System Design for Radar and Wireless Communications
RF system design in radar and wireless communications involves the integration of various RF
components, such as antennas, filters, amplifiers, modulators, and demodulators. Your RF system
design must consider the tradeoffs in these components to mitigate noise and intermodulation
distortion effects. This topic discusses RF system design considerations and provides cross-product
workflows for radar, long-term evolution (LTE), 5G, and wireless local area network (WLAN)
applications.

Design Considerations
Radar

Radar applications require RF transmitters and RF receivers. RF transmitters primarily consist of an
amplifier and a filter. Since the filter is a linear device and the amplifier is a nonlinear device, you can
split the RF transmitter into two subsystems. This separation allows the use of different simulation
frequency sets in each subsystem and permits a tradeoff between faster simulation speed and the loss
of inter-stage loading effects available in a cascaded chain.

For RF receiver design you can use the direct conversion structure with LNA and matching networks.
The low noise amplifier (LNA) can be described in a touchstone file and the local oscillator must
include a phase noise model. As with RF transmitters, you can split RF receivers into linear and
nonlinear subsystems. The linear subsystem can contain matching networks, the LNA, and the filter,
while the nonlinear subsystem can contain the Mixer block and final stage amplifiers.

LTE and 5G

LTE and 5G applications require characterizing the impact of LTE interference in the RF reception of
a new radio (NR) waveform. To characterize the impact of LTE interferences, you can use RF Blockset
to design an RF receiver and downconvert baseband LTE and NR waveforms. Using downconverted
waveforms, you can calculate the error vector magnitude (EVM), adjacent channel leakage ratio
(ACLR), occupied bandwidth, channel power, and complementary cumulative distributive functions
(CCDF) with LTE Toolbox and 5G Toolbox. You can use the rfsystem object as a device under test
(DUT) to implement a measurement testbench for your RF receiver for LTE reception.

You can also characterize the impact of RF impairments such as IQ imbalance, phase noise, and PA
nonlinearities on the performance of an NR RF transmitter.

WLAN

WLAN applications require characterizing the impact of RF impairments, such as in-phase and
quadrature (IQ) imbalance, phase noise, and power amplifier (PA) nonlinearities in the transmission
of an 802.11ax waveform. To characterize the impact of RF impairments on an 802.11ax network, you
can use WLAN Toolbox™ to generate and oversample a baseband 802.11ax waveform. This waveform
can be imported as an RF signal into the RF transmitter block to upconvert. Using this upconverted
waveform, you can calculate the spectral mask, occupied bandwidth, channel power, CCDF, and peak-
to-average power ratio (PAPR).

Design Workflows
You can design RF systems for radar and wireless communications using these cross-product
workflows:

9 Cross-Product Workflow Topics

9-2

• “Radar System Modeling” on page 8-87 — This workflow shows how to set up a radar system
simulation consisting of a transmitter, a channel with a target, and a receiver. RF Blockset is used
for modeling the RF transmitter and receiver sections.

• “Modeling RF Front End in Radar System Simulation” (Phased Array System Toolbox) — This
workflow shows how to incorporate RF front-end behavior into an existing radar system design. In
a radar system, the RF front end often plays an important role in defining the system
performance. For example, since the RF front end is the first section in the receiver chain, the
design of its low noise amplifier is critical to achieving the desired SNR.

• “Modeling and Testing an NR RF Receiver with LTE Interference” (5G Toolbox) — This workflow
shows how to characterize the impact of RF impairments in the RF reception of an NR waveform
coexisting with LTE interference. The baseband waveforms are generated using 5G Toolbox and
LTE Toolbox, and the RF receiver is modeled using RF Blockset.

• “Modeling and Testing an 802.11ax RF Transmitter” (WLAN Toolbox) — This workflow shows how
to characterize the impact of RF impairments in an 802.11ax transmitter. The example generates a
baseband IEEE® 802.11ax™ waveform by using WLAN Toolbox and models the RF transmitter by
using RF Blockset.

• “RF Receiver Modeling for LTE Reception” on page 8-92 — This workflow shows how to model and
test an LTE RF receiver using LTE Toolbox and RF Blockset.

• “Radar Tracking System” on page 8-132 — This workflow shows how to simulate a key multi-
discipline design problem from the Aerospace Defense industry sector.

See Also

Related Examples
• “RF Transceiver Design” on page 9-4
• “RF Noise and Nonlinearity Simulations” on page 9-6

 RF System Design for Radar and Wireless Communications

9-3

RF Transceiver Design
An RF transceiver module consists of two submodules: an RF transmitter and RF receiver. You can
design an RF transceiver architecture and integrate it into your system design using RF Toolbox™
and RF Blockset. This topic discusses RF transceiver design considerations and provides workflows.

Design Considerations
You can begin the transmitter or receiver design process with a budget specification for how much
gain, noise figure (NF), and nonlinearity (IP3) the entire system must satisfy. To assure the feasibility
of an architecture modeled as a simple cascade of RF elements, you can calculate both the per-stage
and cascade values for gain, noise figure, and IP3 (third-intercept point) using the RF Budget
Analyzer app. For example, you can design a superheterodyne transceiver architecture in the RF
Budget Analyzer app and export this architecture to RF Blockset for circuit envelope analysis. You
can also export this cascaded architecture to RF Blockset measurement testbench as a device under
test (DUT) to verify the results obtained in the RF Budget Analyzer app.

You can design an RF receiver using the top-down methodology. For example, using a top-down
approach, you can design an RF receiver in Zigbee®-like applications to verify BER impairment
models. Designing RF transceivers for mm-wave systems often requires adding hybrid-beamforming
antennas to your RF transceiver modules. Using RF Blockset, Phased Array System Toolbox™, and
Communications Toolbox you can include these hybrid-beamforming antennas in your mm-wave
transmitter and receiver modules and analyze RF imperfections and transmit radiation effects.

You can calculate RF impairments such as component noise, interference from blocker signals, LO
phase noise, the dynamic range of the analog-to-digital convertor, and component mismatch in a low
IF architecture using RF Blockset Circuit Envelope simulations. Using Communication Toolbox and
RF Blockset, you can also integrate an RF receiver with baseband signal processing algorithms to
model end-to-end communication systems.

You can also use RF Blockset Analog Devices support software models “AD9361 Models” on page 4-2
and “AD9371 Models” on page 4-9 to simulate and verify agile RF transceiver designs. MathWorks®

and Analog Devices co-developed the models and validated the values using lab measurements.

Design Workflows
You can design an RF transceiver using these cross-product workflows:

• “Superheterodyne Receiver Using RF Budget Analyzer App” — This workflow shows how to build
a superheterodyne receiver and analyze the RF budget of the receiver for gain, noise figure, and
IP3 using the RF Budget Analyzer app.

• “Top-Down Design of an RF Receiver” on page 8-166 — This workflow designs an RF receiver for a
ZigBee-like application using a top-down methodology. It verifies the BER of an impairment-free
design, then analyzes BER performance after the addition of impairment models. The example
uses the RF Budget Analyzer app to rank the elements contributing to the noise and nonlinearity
budget.

• “Modeling RF mmWave Transmitter with Hybrid Beamforming” on page 8-149 — This workflow
illustrates a methodology for system-level modeling and simulation of a 66 GHz QPSK RF transmit
and receive system with a 32-element hybrid beamforming antenna. The system includes RF
imperfections, transmit array radiation effects, a narrowband receive array, and a baseband
receiver with corrections for system impairments and message decoding. The antenna

9 Cross-Product Workflow Topics

9-4

beamforming direction is defined using azimuth and elevation angles and it is estimated in the RF
receive antenna using the root-MUSIC DOA algorithm.

• “Architectural Design of a Low IF Receiver System” on page 8-178 — This workflow shows how to
use the RF Blockset Circuit Envelope library to simulate the performance of a low-IF architecture
with RF impairments.

• “Communications System with Embedded RF Receiver” on page 8-13 — This workflow shows how
to integrate an RF receiver with baseband signal processing algorithms to model an end-to-end
communications system.

See Also

Related Examples
• “RF Noise and Nonlinearity Simulations” on page 9-6
• “RF System Design for Radar and Wireless Communications” on page 9-2

 RF Transceiver Design

9-5

RF Noise and Nonlinearity Simulations
Excess noise and nonlinearities in amplifiers and mixers can degrade RF system performance. You
can design a robust RF system by simulating noise and nonlinearities in amplifiers and mixers to
determine the optimal noise and nonlinearities in your RF system. This topic discusses power
amplifier (PA) characterization and spot noise measurements using Circuit Envelope library blocks as
well as how you can use Idealized Baseband library blocks to simulate noise and nonlinearities in
your RF systems.

PA Characterizations and Spot Noise Measurements
PA in RF transmitters is not immune to noise and other nonlinearities. To understand the effects of
these impairments you must characterize your power amplifiers. Characterization of power amplifiers
involves simulating and measuring AM/AM and plotting gain against the input power data.
Characterization reveals the linearity of your PA for the input signal given to the system. In addition
to nonlinear gain, you can also simulate the memory effect of the PA using the memory polynomial
model. The memory polynomial model yields complex coefficients of PA. With these coefficients, you
can perform fit and calculate root mean squared (RMS) errors. With this fitted data, you can visualize
both fitted and measured output signals. You can also use the memoryless nonlinearity model to study
the effects of amplitude and phase distortion. In a transmitter, to offset the effects of nonlinearities in
the power amplifier you can perform a digital predistortion.

Spot noise parameters such as the noise factor, optimum reflection coefficient, and resistor noise help
you to describe the noise introduced by a 2-port device. These parameters along with the source
impedance Zs uniquely determine the measured noise figure of the device. You can use noise circles
plotted on a Smith chart generated by a Noise Figure Testbench block to show an interaction
between Zs and the noise figure.

Idealized Baseband Simulations
The RF Blockset™ Idealized Baseband library extends your Simulink® environment with a library of
blocks that model single-carrier complex-baseband systems with discrete-time signals. You can
directly couple blocks from this library with DSP System Toolbox™ blocks or other Simulink blocks to
estimate the impact of RF phenomena on overall system performance.

Idealized Baseband Amplifier and Mixer blocks can be used to simulate nonlinearities and noise in
your RF system design. The Amplifier block provides four nonlinearity models: cubic polynomial,
AM/AM-AM/PM, Saleh, and modified Rapp. Both the Amplifier and Mixer blocks provide three options
to represent noise: noise temperature, noise factor, and noise figure. You can also visualize the power
characteristics and noise characteristics of your systems using these blocks.

Simulation Workflows
You can simulate RF nonlinearities and noise in your system using these cross-product workflows:

• “Power Amplifier Characterization” on page 7-92 — This workflow shows how to characterize a
power amplifier (PA) using measured input and output signals of an NXP Airfast PA. Optionally,
you can use a hardware test setup including an NI PXI chassis with a vector signal transceiver
(VST) to measure the signals at runtime.

• “Digital Predistortion to Compensate for Power Amplifier Nonlinearities” on page 8-78 — This
workflow shows how to use digital predistortion (DPD) in a transmitter to offset the effects of

9 Cross-Product Workflow Topics

9-6

nonlinearities in a power amplifier. by sending two tones and 5G-like OFDM waveform with a
bandwidth of 100 MHz to a RF transmitter.

• “Spot Noise Data in Amplifiers and Effects on Measured Noise Figure” on page 7-16 — This
workflow shows a testbench model to describe the noise introduced by a 2-port device. The spot
noise data parameters, minimum noise figure, reflection coefficient, and resistor noise fully
describe the noise introduced by a 2-port device. These parameters along with the source
impedance Zs uniquely determine the measured noise figure of the device. You can use noise
circles plotted on a Smith chart to show an interaction between Zs and the noise figure.

• “Idealized Baseband Amplifier with Nonlinearity and Noise” on page 7-72 — This workflow shows
how to use the Amplifier block from the Idealized Baseband library to amplify a signal with
nonlinearity and noise. The Amplifier block uses the cubic polynomial model with a linear power
gain of 10 dB, an input IP3 nonlinearity of 30 dBm, and a noise figure of 3 dB.

• “Modulate Quadrature Baseband Signals Using IQ Modulators” on page 7-104 — This workflow
shows how to modulate quadrature baseband signals using two different RF Blockset blocks. You
can use a Mixer block from the Idealized Baseband library or a circuit envelope IQ Modulator
block in your model to modulate quadrature baseband signals to the RF level. Observe the
impairments in the modulated output signal due to gain imbalance, third-order intercepts (OIP3),
and system noise in the complex output power density and output power spectrum analyzers.

• “RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF” — This workflow shows
how to use the harmonic balance solver of the rfbudget object to analyze a low intermediate
frequency (low-IF) receiver RF budget for the second-order intercept point (IP2), and to compute
a more accurate noise figure (NF) that correctly accounts for system nonlinearity and noise
folding.

See Also

Related Examples
• “RF Transceiver Design” on page 9-4
• “RF System Design for Radar and Wireless Communications” on page 9-2

 RF Noise and Nonlinearity Simulations

9-7

	Circuit Envelope
	Sensitivity
	Model System Noise Figure
	Design Receiver with ADC

	Intermodulation Distortion
	Model Direct Conversion Receiver
	Noise in RF Systems
	White and Colored Noise
	Thermal Noise
	Phase Noise
	Noise Figure

	Testbenches
	Use RF Measurement Testbench for RF-to-IQ Converter
	Device Under Test
	RF Measurement Unit
	RF Measurement Unit Parameters

	Using RF Measurement Testbench for IQ-to-RF Converter
	Device Under Test
	RF Measurement Unit
	RF Measurement Unit Parameters

	RF Blockset Models
	Analog Devices Transceiver Models
	AD9361 Models
	AD9361_TX Analog Devices Transmitter
	AD9361_RX Analog Devices Receiver

	AD9361 Testbenches
	AD9361_TX Analog Devices Transmitter Testbench
	AD9361_RX Analog Devices Receiver Testbench
	AD9361_QPSK Analog Devices Testbench

	AD9371 Models
	AD9371_TX Analog Devices Transmitter
	AD9371_RX Analog Devices Receiver
	AD9371_ORX Analog Devices Observer Receiver
	AD9371_SNF Analog Devices Sniffer Receiver

	AD9371 Testbenches
	AD9371_TX Analog Devices Transmitter Testbench
	AD9371_RX Analog Devices Receiver Testbench
	AD9371_ORX Analog Devices Observer Receiver Testbench
	AD9371_SNF Analog Devices Sniffer Receiver Testbench
	AD9371_TX_ORX Analog Devices Transmitter-Observer Testbench

	Equivalent Baseband
	Model an RF System
	Model RF Components
	Add RF Blocks to a Model
	Connect Model Blocks

	Specify or Import Component Data
	Specify Operating Conditions
	Model Nonlinearity
	Amplifier and Mixer Nonlinearity Specifications
	Add Nonlinearity to Your System

	Model Noise
	Amplifier and Mixer Noise Specifications
	Add Noise to Your System
	Plot Noise

	Plot Model Data
	Create Plots
	Available Data for Plotting
	Validate Individual Blocks and Subsystems
	Types of Plots
	Plot Formats
	How to Create a Plot
	Example — Plot Component Data on a Z Smith Chart

	Update Plots
	Modify Plots
	Create and Modify Subsystem Plots

	RF Blockset Equivalent Baseband Algorithms
	Simulate an RF Model
	Determine Modeling Frequencies
	Map Network Parameters to Modeling Frequencies
	Model Noise in an RF System
	Output-Referred Noise in RF Models
	Calculate Noise Figure at Modeling Frequencies
	Calculate System Noise Figure
	Calculate Output Noise Power

	Create Complex Baseband-Equivalent Model
	Baseband-Equivalent Modeling
	Simulation Efficiency of a Baseband-Equivalent Model
	Example — Select Parameter Values for a Baseband-Equivalent Model

	Convert to and from Simulink Signals
	Signal Conversion Specifications
	Interpret Simulink Signals as Incident Power Waves
	Interpret Simulink Signals as Source Voltages
	Specify Input Signal Conversions

	Model Mixers
	2-Port Mixer Blocks
	Model a Mixer Chain
	Quadrature Mixers
	Use RF Blockset Equivalent Baseband Software to Model Quadrature Mixers
	Model Upconversion I/Q Mixers
	Model Downconversion I/Q Mixers
	Simulate I/Q Mixers

	Examples
	Vary Phase Of Signal During Simulation
	Vary Attenuation of Signal During Simulation
	Explicitly Simulate Resistor Thermal Noise
	Attenuate Signal Power
	Demodulate Two-Tone RF Signal Using IQ Demodulator
	Modulate Two-Tone DC Signal Using IQ Modulator
	Spot Noise Data in Amplifiers and Effects on Measured Noise Figure
	Measure Transducer Gain of Device Under Test
	Measure Noise Figure of Device Under Test
	Measure IIP2 of Device Under Test
	Measure IIP3 of Device Under Test
	Measure OIP2 of Device Under Test
	Measure OIP3 of Device Under Test
	Single Pole Triple Throw Switch
	Frequency Response of Lowpass Chebyshev Filter
	Model LO Phase Noise
	Carrier to Interference Performance of Weaver Receiver
	Modulate Two-Tone DC Signal Using IQ Modulator
	Measurement of Gain and Noise Figure Spectrum
	Idealized Baseband Amplifier with Nonlinearity and Noise
	Use Ladder Filter Block to Filter Gaussian Noise
	Measure S-Parameter Data of Chebyshev Filter
	Measure S-Parameter of Nonlinear System
	Simulation of RF Systems with Antenna Blocks
	Power Amplifier Characterization
	Modulate Quadrature Baseband Signals Using IQ Modulators
	Intermodulation Analysis of Mathematical Amplifier
	Create Virtual Connections Using Connection Label Block
	Model Wilkinson Power Divider
	Modulate Input Signal Onto Square Carrier Wave
	Time-Domain Filtering of RF Complex Baseband Signals in Simulink
	Model RF Complex Baseband S-Parameters in Simulink

	RF Blockset Examples
	Getting Started with RF Modeling
	Passband Signal Representation in Circuit Envelope
	Power Ports and Signal Power Measurement in RF Blockset
	Communications System with Embedded RF Receiver
	Automatic Sample-Time Interpolation at Input Port
	Analysis of Frequency Response of RF System
	Compare Time and Frequency Domain Simulation Options for S-parameters
	Transmission Lines, Delay-Based and Lumped Models
	Validating IP2/IP3 Using Complex Signals
	Two-Tone Envelope Analysis Using Real Signals
	Measuring Image Rejection Ratio in Receivers
	Executable Specification of a Direct Conversion Receiver
	Frequency Response of RF Transmit/Receive Duplex Filter
	Digital Predistortion to Compensate for Power Amplifier Nonlinearities
	Radar System Modeling
	RF Receiver Modeling for LTE Reception
	Create Custom RF Blockset Models
	Multiple Realizations of Cascaded Filters
	Cascaded RF Systems
	Power in Simulink Sources and Signals
	Effect of Nonlinear Amplifier on 16-QAM Modulation
	Executable Specification for System Design
	Radar Tracking System
	User-Defined Nonlinear Amplifier Model
	Modeling and Simulation of MIMO RF Receiver Including Beamforming
	Modeling RF mmWave Transmitter with Hybrid Beamforming
	Wireless Digital Video Broadcasting with RF Beamforming
	Top-Down Design of an RF Receiver
	Architectural Design of a Low IF Receiver System
	RF Noise Modeling
	Impact of Thermal Noise on Communication System Performance
	100 Watt TR Module for S-Band Applications
	Massive MIMO Hybrid Beamforming with RF Impairments
	Speed Up PA and DPD simulation
	Model RF Systems with Antenna Arrays Using RF Blockset Antenna Block
	PA and DPD Modeling for Dynamic EVM Measurement
	RF Impairments for 5G NR Downlink Waveforms
	Design and Simulate Monopulse Tracking System
	Enable Model Protection and Accelerator Modes in RF Blockset Models
	Design RF Direct-Conversion Receiver
	Protect Circuit Envelope Model
	Implement Automatic Gain Control for RF Receiver

	Cross-Product Workflow Topics
	RF System Design for Radar and Wireless Communications
	Design Considerations
	Design Workflows

	RF Transceiver Design
	Design Considerations
	Design Workflows

	RF Noise and Nonlinearity Simulations
	PA Characterizations and Spot Noise Measurements
	Idealized Baseband Simulations
	Simulation Workflows

